Comptes Rendus
Number Theory
Means of algebraic numbers in the unit disk
[Moyennes de nombres algébriques dans le disque unité]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 119-122.

Schur a étudié les limites des moyennes arithmétiques sn des zéros pour les polynômes à coefficients entiers de degré n ayant des zéros simples dans le disque unité fermé. Lorsque les coefficients dominants restent bornés, Schur a démontré que lim supn|sn|1e/2. Nous prouvons que sn0. Nous donnons une estimation du taux de convergence, grâce à une généralisation d'un théorème de Erdős–Turán sur la distribution des zéros.

Schur studied limits of the arithmetic means sn of zeros for polynomials of degree n with integer coefficients and simple zeros in the closed unit disk. If the leading coefficients are bounded, Schur proved that lim supn|sn|1e/2. We show that sn0, and estimate the rate of convergence by generalizing the Erdős–Turán theorem on the distribution of zeros.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.01.002

Igor E. Pritsker 1

1 Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA
@article{CRMATH_2009__347_3-4_119_0,
     author = {Igor E. Pritsker},
     title = {Means of algebraic numbers in the unit disk},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--122},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2009.01.002},
     language = {en},
}
TY  - JOUR
AU  - Igor E. Pritsker
TI  - Means of algebraic numbers in the unit disk
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 119
EP  - 122
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2009.01.002
LA  - en
ID  - CRMATH_2009__347_3-4_119_0
ER  - 
%0 Journal Article
%A Igor E. Pritsker
%T Means of algebraic numbers in the unit disk
%J Comptes Rendus. Mathématique
%D 2009
%P 119-122
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2009.01.002
%G en
%F CRMATH_2009__347_3-4_119_0
Igor E. Pritsker. Means of algebraic numbers in the unit disk. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 119-122. doi : 10.1016/j.crma.2009.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.002/

[1] V.V. Andrievskii; H.-P. Blatt Discrepancy of Signed Measures and Polynomial Approximation, Springer-Verlag, New York, 2002

[2] Y. Bilu Limit distribution of small points on algebraic tori, Duke Math. J., Volume 89 (1997), pp. 465-476

[3] P. Borwein Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002

[4] P. Erdős; P. Turán On the distribution of roots of polynomials, Ann. Math., Volume 51 (1950), pp. 105-119

[5] C. Favre; J. Rivera-Letelier Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006), pp. 311-361 (Corrigendum in Math. Ann., 339, 2007, pp. 799-801)

[6] L. Kronecker Zwei Sätze über Gleichungen mit ganzzahligen Coëfficienten, J. Reine Angew. Math., Volume 53 (1857), pp. 173-175

[7] N.S. Landkof Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972

[8] E.B. Saff; V. Totik Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997

[9] I. Schur Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., Volume 1 (1918), pp. 377-402

Cité par Sources :

Commentaires - Politique