Comptes Rendus
On the nondegeneracy of the critical points of the Robin function in symmetric domains
[Sur le non-dégénérescence des points critiques de la fonction de Robin dans les domaines symétriques]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 157-160.

Soit Ω un domain borné et régulier de N, N⩾2, qui est symétrique par rapport à l'origine. Dans cette Note, nous montrons que, sous certaines hypothèses sur Ω (par exemple convexité dans les directions x1,…,xN), la matrice hessienne calculée à zero est diagonale et strictement négative.

Let Ω be a smooth bounded domain of N, N⩾2, which is symmetric with respect to the origin. In this Note we prove that, under some geometrical condition on Ω (for example convexity in the directions x1,…,xN), the Hessian matrix of the Robin function computed at zero is diagonal and strictly negative definite.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02448-2

Massimo Grossi 1

1 Dipartimento di Matematica, Università di Roma “La Sapienza” P.le Aldo Moro, 2, 00185 Roma, Italy
@article{CRMATH_2002__335_2_157_0,
     author = {Massimo Grossi},
     title = {On the nondegeneracy of the critical points of the {Robin} function in symmetric domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {157--160},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02448-2},
     language = {en},
}
TY  - JOUR
AU  - Massimo Grossi
TI  - On the nondegeneracy of the critical points of the Robin function in symmetric domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 157
EP  - 160
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02448-2
LA  - en
ID  - CRMATH_2002__335_2_157_0
ER  - 
%0 Journal Article
%A Massimo Grossi
%T On the nondegeneracy of the critical points of the Robin function in symmetric domains
%J Comptes Rendus. Mathématique
%D 2002
%P 157-160
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02448-2
%G en
%F CRMATH_2002__335_2_157_0
Massimo Grossi. On the nondegeneracy of the critical points of the Robin function in symmetric domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 157-160. doi : 10.1016/S1631-073X(02)02448-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02448-2/

[1] A. Bahri; Y.Y. Li; O. Rey On a variational problemwith lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995), pp. 67-93

[2] C. Bandle; M. Flucher Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations, SIAM Rev., Volume 38 (1996), pp. 239-255

[3] H. Brezis; L. Peletier Asymptotics for elliptic equations involving the critical growth, Partial Differential Equations and Calculus of Variations, Progr. Nonlinear Differential Equations Appl., 1, Birkäuser, Boston, 1989, pp. 149-192

[4] D. Gilbarg; N. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[5] L. Glangetas Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlinear Anal., Volume 20 (1993), pp. 571-603

[6] Z.C. Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 159-174

[7] O. Rey The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990), pp. 1-52

[8] O. Rey Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math., Volume 65 (1989), pp. 19-37

  • Alejandro Ortega On the non-degeneracy of the Robin function for the fractional Laplacian on symmetric domains, Bulletin of the Iranian Mathematical Society, Volume 50 (2024) no. 1, p. 16 (Id/No 4) | DOI:10.1007/s41980-023-00841-0 | Zbl:1540.35131
  • Massimo Grossi; Peng Luo Critical points of positive solutions of nonlinear elliptic equations: multiplicity, location, and non-degeneracy, Indiana University Mathematics Journal, Volume 72 (2023) no. 2, pp. 821-871 | DOI:10.1512/iumj.2023.72.9275 | Zbl:1515.35105
  • Houwang Li; Juncheng Wei; Wenming Zou Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 179 (2023), pp. 1-67 | DOI:10.1016/j.matpur.2023.09.001 | Zbl:1525.35132
  • Mónica Clapp; Rosa Pardo; Angela Pistoia; Alberto Saldaña A solution to a slightly subcritical elliptic problem with non-power nonlinearity, Journal of Differential Equations, Volume 275 (2021), pp. 418-446 | DOI:10.1016/j.jde.2020.11.030 | Zbl:1465.35242
  • Daomin Cao; Peng Luo; Shuangjie Peng The number of positive solutions to the Brezis-Nirenberg problem, Transactions of the American Mathematical Society, Volume 374 (2021) no. 3, pp. 1947-1985 | DOI:10.1090/tran/8287 | Zbl:1471.35140
  • Francesca Gladiali; Massimo Grossi; Hiroshi Ohtsuka On the number of peaks of the eigenfunctions of the linearized Gel'fand problem, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 195 (2016) no. 1, pp. 79-93 | DOI:10.1007/s10231-014-0453-z | Zbl:1348.35061
  • Thomas Bartsch; Qianhui Dai Periodic solutions of the N-vortex Hamiltonian system in planar domains, Journal of Differential Equations, Volume 260 (2016) no. 3, pp. 2275-2295 | DOI:10.1016/j.jde.2015.10.002 | Zbl:1337.37043
  • Valeria Marino; Filomena Pacella; Berardino Sciunzi Blow up of solutions of semilinear heat equations in general domains, Communications in Contemporary Mathematics, Volume 17 (2015) no. 2, p. 17 (Id/No 1350042) | DOI:10.1142/s0219199713500429 | Zbl:1328.35120
  • Anna Maria Micheletti; Angela Pistoia Non degeneracy of critical points of the Robin function with respect to deformations of the domain, Potential Analysis, Volume 40 (2014) no. 2, pp. 103-116 | DOI:10.1007/s11118-013-9340-2 | Zbl:1286.35084
  • Futoshi Takahashi Some identities of Green's function for the polyharmonic operator with the Navier boundary conditions and its applications, Mathematische Nachrichten, Volume 286 (2013) no. 2-3, pp. 306-319 | DOI:10.1002/mana.201100236 | Zbl:1266.35021
  • Juan Dávila; Erwin Topp Concentrating solutions of the Liouville equation with Robin boundary condition, Journal of Differential Equations, Volume 252 (2012) no. 3, pp. 2648-2697 | DOI:10.1016/j.jde.2011.09.036 | Zbl:1236.35046
  • Monica Musso; Angela Pistoia Tower of bubbles for almost critical problems in general domains, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 93 (2010) no. 1, pp. 1-40 | DOI:10.1016/j.matpur.2009.08.001 | Zbl:1183.35143
  • Juan Dávila; Michał Kowalczyk; Marcelo Montenegro Critical points of the regular part of the harmonic Green function with Robin boundary condition, Journal of Functional Analysis, Volume 255 (2008) no. 5, pp. 1057-1101 | DOI:10.1016/j.jfa.2007.11.023 | Zbl:1159.35020

Cité par 13 documents. Sources : zbMATH

Commentaires - Politique