[Sur le non-dégénérescence des points critiques de la fonction de Robin dans les domaines symétriques]
Soit
Let
Publié le :
Massimo Grossi 1
@article{CRMATH_2002__335_2_157_0, author = {Massimo Grossi}, title = {On the nondegeneracy of the critical points of the {Robin} function in symmetric domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--160}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02448-2}, language = {en}, }
Massimo Grossi. On the nondegeneracy of the critical points of the Robin function in symmetric domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 157-160. doi : 10.1016/S1631-073X(02)02448-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02448-2/
[1] On a variational problemwith lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995), pp. 67-93
[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations, SIAM Rev., Volume 38 (1996), pp. 239-255
[3] Asymptotics for elliptic equations involving the critical growth, Partial Differential Equations and Calculus of Variations, Progr. Nonlinear Differential Equations Appl., 1, Birkäuser, Boston, 1989, pp. 149-192
[4] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[5] Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlinear Anal., Volume 20 (1993), pp. 571-603
[6] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 159-174
[7] The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990), pp. 1-52
[8] Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math., Volume 65 (1989), pp. 19-37
- On the non-degeneracy of the Robin function for the fractional Laplacian on symmetric domains, Bulletin of the Iranian Mathematical Society, Volume 50 (2024) no. 1, p. 16 (Id/No 4) | DOI:10.1007/s41980-023-00841-0 | Zbl:1540.35131
- Critical points of positive solutions of nonlinear elliptic equations: multiplicity, location, and non-degeneracy, Indiana University Mathematics Journal, Volume 72 (2023) no. 2, pp. 821-871 | DOI:10.1512/iumj.2023.72.9275 | Zbl:1515.35105
- Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 179 (2023), pp. 1-67 | DOI:10.1016/j.matpur.2023.09.001 | Zbl:1525.35132
- A solution to a slightly subcritical elliptic problem with non-power nonlinearity, Journal of Differential Equations, Volume 275 (2021), pp. 418-446 | DOI:10.1016/j.jde.2020.11.030 | Zbl:1465.35242
- The number of positive solutions to the Brezis-Nirenberg problem, Transactions of the American Mathematical Society, Volume 374 (2021) no. 3, pp. 1947-1985 | DOI:10.1090/tran/8287 | Zbl:1471.35140
- On the number of peaks of the eigenfunctions of the linearized Gel'fand problem, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 195 (2016) no. 1, pp. 79-93 | DOI:10.1007/s10231-014-0453-z | Zbl:1348.35061
- Periodic solutions of the
-vortex Hamiltonian system in planar domains, Journal of Differential Equations, Volume 260 (2016) no. 3, pp. 2275-2295 | DOI:10.1016/j.jde.2015.10.002 | Zbl:1337.37043 - Blow up of solutions of semilinear heat equations in general domains, Communications in Contemporary Mathematics, Volume 17 (2015) no. 2, p. 17 (Id/No 1350042) | DOI:10.1142/s0219199713500429 | Zbl:1328.35120
- Non degeneracy of critical points of the Robin function with respect to deformations of the domain, Potential Analysis, Volume 40 (2014) no. 2, pp. 103-116 | DOI:10.1007/s11118-013-9340-2 | Zbl:1286.35084
- Some identities of Green's function for the polyharmonic operator with the Navier boundary conditions and its applications, Mathematische Nachrichten, Volume 286 (2013) no. 2-3, pp. 306-319 | DOI:10.1002/mana.201100236 | Zbl:1266.35021
- Concentrating solutions of the Liouville equation with Robin boundary condition, Journal of Differential Equations, Volume 252 (2012) no. 3, pp. 2648-2697 | DOI:10.1016/j.jde.2011.09.036 | Zbl:1236.35046
- Tower of bubbles for almost critical problems in general domains, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 93 (2010) no. 1, pp. 1-40 | DOI:10.1016/j.matpur.2009.08.001 | Zbl:1183.35143
- Critical points of the regular part of the harmonic Green function with Robin boundary condition, Journal of Functional Analysis, Volume 255 (2008) no. 5, pp. 1057-1101 | DOI:10.1016/j.jfa.2007.11.023 | Zbl:1159.35020
Cité par 13 documents. Sources : zbMATH
Commentaires - Politique