[Sur le non-dégénérescence des points critiques de la fonction de Robin dans les domaines symétriques]
Soit
Let
Publié le :
Massimo Grossi 1
@article{CRMATH_2002__335_2_157_0, author = {Massimo Grossi}, title = {On the nondegeneracy of the critical points of the {Robin} function in symmetric domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--160}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02448-2}, language = {en}, }
Massimo Grossi. On the nondegeneracy of the critical points of the Robin function in symmetric domains. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 157-160. doi : 10.1016/S1631-073X(02)02448-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02448-2/
[1] On a variational problemwith lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995), pp. 67-93
[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations, SIAM Rev., Volume 38 (1996), pp. 239-255
[3] Asymptotics for elliptic equations involving the critical growth, Partial Differential Equations and Calculus of Variations, Progr. Nonlinear Differential Equations Appl., 1, Birkäuser, Boston, 1989, pp. 149-192
[4] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[5] Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlinear Anal., Volume 20 (1993), pp. 571-603
[6] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 159-174
[7] The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990), pp. 1-52
[8] Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math., Volume 65 (1989), pp. 19-37
Cité par Sources :
Commentaires - Politique