Comptes Rendus
A new approach on estimation of the tail index
[Une nouvelle méthode pour l'estimation de l'index d'une queue]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 279-282.

Une nouvelle méthode est proposée pour l'estimation de l'index d'une queue de distribution. Elle est basée sur l'étude de statistiques divergentes. Les estimateurs résultants sont simples à construire et peuvent être utilisés pour résoudre d'autres problèmes d'estimation.

A new approach on tail index estimation is proposed based on studying the in-sample evolution of appropriately chosen diverging statistics. The resulting estimators are simple to construct, and they can be generalized to address other rate estimation problems as well.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02450-0

Dimitris N. Politis 1

1 Department of Mathematics, University of California–San Diego, La Jolla, CA 92093, USA
@article{CRMATH_2002__335_3_279_0,
     author = {Dimitris N. Politis},
     title = {A new approach on estimation of the tail index},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {279--282},
     publisher = {Elsevier},
     volume = {335},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02450-0},
     language = {en},
}
TY  - JOUR
AU  - Dimitris N. Politis
TI  - A new approach on estimation of the tail index
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 279
EP  - 282
VL  - 335
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02450-0
LA  - en
ID  - CRMATH_2002__335_3_279_0
ER  - 
%0 Journal Article
%A Dimitris N. Politis
%T A new approach on estimation of the tail index
%J Comptes Rendus. Mathématique
%D 2002
%P 279-282
%V 335
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02450-0
%G en
%F CRMATH_2002__335_3_279_0
Dimitris N. Politis. A new approach on estimation of the tail index. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 279-282. doi : 10.1016/S1631-073X(02)02450-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02450-0/

[1] S. Csörgő; P. Deheuvels; D.M. Mason Kernel estimates of the tail index of a distribution, Ann. Statist., Volume 13 (1985), pp. 1050-1077

[2] S. Csörgő; L. Viharos Estimating the tail index (B. Szyszkowicz, ed.), Asymptotic Methods in Probability and Statistics, North-Holland, Amsterdam, 1998, pp. 833-881

[3] P. Embrechts; C. Klüppelberg; T. Mikosch Modelling Extremal Events, Springer, Berlin, 1997

[4] E. Giné; J. Zinn Necessary conditions for the bootstrap of the mean, Ann. Statist., Volume 17 (1990), pp. 684-691

[5] T. McElroy, D.N. Politis, Robust inference for the mean in the presence of serial correlation and heavy tailed distributions, Econometric Theory, 2002, forthcoming

Cité par Sources :

Commentaires - Politique