Comptes Rendus
Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle
[Inversion exacte d'une transformation conique de Radon composée et nouveau principe d'imagerie nucléaire]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 213-217.

Une nouvelle transformation intégrale issue de la formation d'image à partir des photons diffusés par effet Compton a été établie. Sa formule d'inversion explicite a été démontrée. Ses propriétés servent de fondement à un nouveau principe d'imagerie nucléaire.

A new integral transform arising from a theory of imaging based on Compton scattering is introduced and the explicit expression for its inverse is established. Its properties serve as foundation to a new nuclear emission imaging principle.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02453-6

Mai K. Nguyen 1 ; Tuong T. Truong 2

1 Équipe traitement des images et du signal, CNRS UMR 8051, ENSEA–Université de Cergy-Pontoise, 6, avenue du Ponceau, 95014 Cergy-Pontoise, France
2 Laboratoire de physique théorique et modélisation, CNRS UMR 8089, Université de Cergy-Pontoise, 5, mail Gay-Lussac, 95031 Cergy-Pontoise, France
@article{CRMATH_2002__335_2_213_0,
     author = {Mai K. Nguyen and Tuong T. Truong},
     title = {Exact inversion of a compound conical {Radon} transform and a novel nuclear imaging principle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {213--217},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02453-6},
     language = {en},
}
TY  - JOUR
AU  - Mai K. Nguyen
AU  - Tuong T. Truong
TI  - Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 213
EP  - 217
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02453-6
LA  - en
ID  - CRMATH_2002__335_2_213_0
ER  - 
%0 Journal Article
%A Mai K. Nguyen
%A Tuong T. Truong
%T Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle
%J Comptes Rendus. Mathématique
%D 2002
%P 213-217
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02453-6
%G en
%F CRMATH_2002__335_2_213_0
Mai K. Nguyen; Tuong T. Truong. Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 213-217. doi : 10.1016/S1631-073X(02)02453-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02453-6/

[1] A.M. Cormack Radon's problem for some surfaces in n , Proc. Amer. Math. Soc., Volume 99 (1987) no. 2, pp. 305-312

[2] M.J. Cree; P.J. Bones Towards direct reconstruction from a gamma-camera based on Compton scattering, IEEE Trans. Med. Imag., Volume 13 (1994) no. 2, pp. 398-407

[3] J. Lavoine Transformation de Fourier des Pseudo-fonctions avec Tables de Nouvelles Transformées, CNRS, Paris, 1963

[4] W. Magnus; F. Oberhettinger; R.P. Soni Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, New York, 1966

[5] M.K. Nguyen; C. Fay; L. Eglin; T.T. Truong Apparent image formation by Compton scattered photons in gamma-ray imaging, IEEE Signal Processing Lett., Volume 8 (2001) no. 9, pp. 248-251

[6] M.K. Nguyen; T.T. Truong On an integral transform and its inverse in nuclear imaging, Inverse Problems, Volume 18 (2002) no. 2, pp. 265-277

[7] V.P. Palamodov Radon Transformation on Real Algebraic Varieties (S. Gindikin; P. Michor, eds.), Proceedings of the Conference “75 Years of Radon Transform”, International Press, Boston, 1994, pp. 252-262

[8] J. Radon Über die Bestimmung von Funktionnen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Natur. Kl., Volume 69 (1917), pp. 262-277

Cité par Sources :

Commentaires - Politique