Comptes Rendus
A parareal in time procedure for the control of partial differential equations
[Une technique de contrôle d'équations aux dérivées partielles en temps pararéel]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 387-392.

We have proposed in a previous note a time discretization for partial differential evolution equation that allows for parallel implementations. This scheme is here reinterpreted as a preconditioning procedure on an algebraic setting of the time discretization. This allows for extending the parallel methodology to the problem of optimal control for partial differential equations. We report a first numerical implementation that reveals a large interest.

On a proposé dans une précédente note, un schéma permettant de profiter d'une architecture parallèle pour la discrétisation en temps d'équation d'évolution aux dérivées partielles. Ce schéma est ici interprété sous un angle différent et matriciel, permettant d'étendre le concept pour le contrôle d'EDP. Les premières expériences numériques sont extrèmement encourageantes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02467-6

Yvon Maday 1 ; Gabriel Turinici 2, 3

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boı̂te courrier 187, 75252 Paris cedex 05, France
2 INRIA Rocquencourt, BP 105, 78153 Le Chesnay cedex, France
3 CERMICS, ENPC, Marne la Vallée, France
@article{CRMATH_2002__335_4_387_0,
     author = {Yvon Maday and Gabriel Turinici},
     title = {A parareal in time procedure for the control of partial differential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {387--392},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02467-6},
     language = {en},
}
TY  - JOUR
AU  - Yvon Maday
AU  - Gabriel Turinici
TI  - A parareal in time procedure for the control of partial differential equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 387
EP  - 392
VL  - 335
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02467-6
LA  - en
ID  - CRMATH_2002__335_4_387_0
ER  - 
%0 Journal Article
%A Yvon Maday
%A Gabriel Turinici
%T A parareal in time procedure for the control of partial differential equations
%J Comptes Rendus. Mathématique
%D 2002
%P 387-392
%V 335
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02467-6
%G en
%F CRMATH_2002__335_4_387_0
Yvon Maday; Gabriel Turinici. A parareal in time procedure for the control of partial differential equations. Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 387-392. doi : 10.1016/S1631-073X(02)02467-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02467-6/

[1] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zerah, Parallel in time molecular dynamics simulations, CEMRACS'01 Proceedings, submitted

[2] J.-L. Lions Virtual and effective control for distributed systems and decomposition of everything, J. Anal. Math., Volume 80 (2000), pp. 257-297

[3] J.-L. Lions; Y. Maday; G. Turinici Résolution d'EDP par un schéma en temps « pararéel », C. R. Acad. Sci. Paris, Série I, Volume 332 (2001) no. 7, pp. 661-668

  • Min-Li Zeng; Martin Stoll A splitting-based KPIK method for eddy current optimal control problems in an all-at-once approach, Computers Mathematics with Applications, Volume 190 (2025), p. 1 | DOI:10.1016/j.camwa.2025.03.038
  • Simo Särkkä; Ángel F. García-Fernández Temporal Parallelization of the HJB Equation and Continuous-Time Linear Quadratic Control, IEEE Transactions on Automatic Control, Volume 70 (2025) no. 6, p. 3755 | DOI:10.1109/tac.2024.3518309
  • N. Janssens; J. Meyers Parallel-in-time multiple shooting for optimal control problems governed by the Navier–Stokes equations, Computer Physics Communications, Volume 296 (2024), p. 109019 | DOI:10.1016/j.cpc.2023.109019
  • Ajit Kumar Investigation of Second Order Taylor Series in the Coarse Operator of Parareal Algorithm for Power System Simulation, IEEE Transactions on Circuits and Systems II: Express Briefs, Volume 71 (2024) no. 9, p. 4321 | DOI:10.1109/tcsii.2024.3381372
  • Youngkyu Lee; Jongho Park; Chang-Ock Lee Parareal Neural Networks Emulating a Parallel-in-Time Algorithm, IEEE Transactions on Neural Networks and Learning Systems, Volume 35 (2024) no. 5, p. 6353 | DOI:10.1109/tnnls.2022.3206797
  • Luigi Barletti; Luigi Brugnano; Gianmarco Gurioli; Felice Iavernaro Recent advances in the numerical solution of the Nonlinear Schrödinger Equation, Journal of Computational and Applied Mathematics, Volume 445 (2024), p. 115826 | DOI:10.1016/j.cam.2024.115826
  • Yen-Chen Chen; Kengo Nakajima A Cascadic Parareal Method for Parallel-in-Time Simulation of Compressible Supersonic Flow, Journal of Information Processing, Volume 32 (2024) no. 0, p. 369 | DOI:10.2197/ipsjjip.32.369
  • Bo Song; Jing-Yi Wang; Yao-Lin Jiang Analysis of a New Krylov subspace enhanced parareal algorithm for time-periodic problems, Numerical Algorithms, Volume 97 (2024) no. 1, p. 289 | DOI:10.1007/s11075-023-01704-9
  • Jehanzeb H. Chaudhry; Donald Estep; Simon J. Tavener A posteriori error analysis for a space‐time parallel discretization of parabolic partial differential equations, Numerical Methods for Partial Differential Equations, Volume 40 (2024) no. 1 | DOI:10.1002/num.23065
  • Qi Sun; Hexin Dong; Zewei Chen; Jiacheng Sun; Zhenguo Li; Bin Dong Layer‐parallel training of residual networks with auxiliary variable networks, Numerical Methods for Partial Differential Equations, Volume 40 (2024) no. 6 | DOI:10.1002/num.23147
  • Martin J. Gander; Liu-Di Lu New Time Domain Decomposition Methods for Parabolic Optimal Control Problems I: Dirichlet–Neumann and Neumann–Dirichlet Algorithms, SIAM Journal on Numerical Analysis, Volume 62 (2024) no. 4, p. 2048 | DOI:10.1137/23m1584502
  • Martin J. Gander; Liu-Di Lu New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms, SIAM Journal on Numerical Analysis, Volume 62 (2024) no. 6, p. 2588 | DOI:10.1137/24m1634424
  • Riccardo Tenderini; Nicholas Mueller; Simone Deparis Space-Time Reduced Basis Methods for Parametrized Unsteady Stokes Equations, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 1, p. B1 | DOI:10.1137/22m1509114
  • Zhiyong Wu; Huan Wang; Chang He; Bingjian Zhang; Tao Xu; Qinglin Chen The Application of Physics-Informed Machine Learning in Multiphysics Modeling in Chemical Engineering, Industrial Engineering Chemistry Research, Volume 62 (2023) no. 44, p. 18178 | DOI:10.1021/acs.iecr.3c02383
  • Liang Fang; Stefan Vandewalle; Johan Meyers An SQP-based multiple shooting algorithm for large-scale PDE-constrained optimal control problems, Journal of Computational Physics, Volume 477 (2023), p. 111927 | DOI:10.1016/j.jcp.2023.111927
  • Günter Leugering Nonoverlapping domain decomposition and virtual controls for optimal control problems of p-type on metric graphs, Numerical Control: Part B, Volume 24 (2023), p. 217 | DOI:10.1016/bs.hna.2022.11.002
  • Cyrus Tanade; Emily Rakestraw; William Ladd; Erik Draeger; Amanda Randles, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2023), p. 1 | DOI:10.1145/3581784.3607101
  • Kamran Pentland; Massimiliano Tamborrino; Debasmita Samaddar; Lynton C. Appel Stochastic Parareal: An Application of Probabilistic Methods to Time-Parallelization, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 3, p. S82 | DOI:10.1137/21m1414231
  • Chen-Ye Wang; Yao-Lin Jiang; Zhen Miao Time domain decomposition of parabolic control problems based on discontinuous Galerkin semi-discretization, Applied Numerical Mathematics, Volume 176 (2022), p. 118 | DOI:10.1016/j.apnum.2022.02.016
  • Stefan Güttel; John W Pearson A spectral-in-time Newton–Krylov method for nonlinear PDE-constrained optimization, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 2, p. 1478 | DOI:10.1093/imanum/drab011
  • Liang Fang; Stefan Vandewalle; Johan Meyers A parallel-in-time multiple shooting algorithm for large-scale PDE-constrained optimal control problems, Journal of Computational Physics, Volume 452 (2022), p. 110926 | DOI:10.1016/j.jcp.2021.110926
  • Santolo Leveque; John W. Pearson Fast iterative solver for the optimal control of time‐dependent PDEs with Crank–Nicolson discretization in time, Numerical Linear Algebra with Applications, Volume 29 (2022) no. 2 | DOI:10.1002/nla.2419
  • Frédéric Legoll; Tony Lelièvre; Upanshu Sharma An Adaptive Parareal Algorithm: Application to the Simulation of Molecular Dynamics Trajectories, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 1, p. B146 | DOI:10.1137/21m1412979
  • Angelo Pasquale; Amine Ammar; Antonio Falcó; Simona Perotto; Elías Cueto; Jean-Louis Duval; Francisco Chinesta A separated representation involving multiple time scales within the Proper Generalized Decomposition framework, Advanced Modeling and Simulation in Engineering Sciences, Volume 8 (2021) no. 1 | DOI:10.1186/s40323-021-00211-7
  • Richard Krug; Günter Leugering; Alexander Martin; Martin Schmidt; Dieter Weninger Time-domain decomposition for optimal control problems governed by semilinear hyperbolic systems with mixed two-point boundary conditions, Control and Cybernetics, Volume 50 (2021) no. 4, p. 427 | DOI:10.2478/candc-2021-0026
  • Alexander Heinlein; Axel Klawonn; Martin Lanser; Janine Weber Combining machine learning and domain decomposition methods for the solution of partial differential equations—A review, GAMM-Mitteilungen, Volume 44 (2021) no. 1 | DOI:10.1002/gamm.202100001
  • C.S. Skene; M.F. Eggl; P.J. Schmid A parallel-in-time approach for accelerating direct-adjoint studies, Journal of Computational Physics, Volume 429 (2021), p. 110033 | DOI:10.1016/j.jcp.2020.110033
  • Guanglian Li; Jiuhua Hu Wavelet-based edge multiscale parareal algorithm for parabolic equations with heterogeneous coefficients and rough initial data, Journal of Computational Physics, Volume 444 (2021), p. 110572 | DOI:10.1016/j.jcp.2021.110572
  • Jehanzeb H. Chaudhry; J.B. Collins A posteriori error estimation for the spectral deferred correction method, Journal of Computational and Applied Mathematics, Volume 382 (2021), p. 113097 | DOI:10.1016/j.cam.2020.113097
  • Richard Krug; Günter Leugering; Alexander Martin; Martin Schmidt; Dieter Weninger Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 6, p. 4339 | DOI:10.1137/20m138329x
  • Shuonan Wu; Zhi Zhou A Parallel-in-Time Algorithm for High-Order BDF Methods for Diffusion and Subdiffusion Equations, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 6, p. A3627 | DOI:10.1137/20m1355690
  • Jun Liu; John W. Pearson Parameter-robust preconditioning for the optimal control of the wave equation, Numerical Algorithms, Volume 83 (2020) no. 3, p. 1171 | DOI:10.1007/s11075-019-00720-y
  • Charles-Edouard Brehier; Xu Wang On Parareal Algorithms for Semilinear Parabolic Stochastic PDEs, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 1, p. 254 | DOI:10.1137/19m1251011
  • Martin J. Gander; Felix Kwok; Julien Salomon PARAOPT: A Parareal Algorithm for Optimality Systems, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 5, p. A2773 | DOI:10.1137/19m1292291
  • Shu Wang; Yang Shao; Zhen Peng A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems, IEEE Transactions on Antennas and Propagation, Volume 67 (2019) no. 6, p. 3961 | DOI:10.1109/tap.2019.2909937
  • Rubén Ibáñez; Amine Ammar; Elías Cueto; Antonio Huerta; Jean‐Louis Duval; Francisco Chinesta Multiscale proper generalized decomposition based on the partition of unity, International Journal for Numerical Methods in Engineering, Volume 120 (2019) no. 6, p. 727 | DOI:10.1002/nme.6154
  • Martin J. Gander; Yao-Lin Jiang; Bo Song A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 2, p. A1148 | DOI:10.1137/18m1177226
  • Jialin Hong; Xu Wang; Liying Zhang Parareal Exponential θ-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 6, p. B1155 | DOI:10.1137/18m1176749
  • Natalia Kalinnik; Thomas Rauber, 2018 17th International Symposium on Parallel and Distributed Computing (ISPDC) (2018), p. 1 | DOI:10.1109/ispdc2018.2018.00010
  • Matthias Korch; Tim Werner Accelerating explicit ODE methods on GPUs by kernel fusion, Concurrency and Computation: Practice and Experience, Volume 30 (2018) no. 18 | DOI:10.1002/cpe.4470
  • A. Lapin; E. Laitinen Iterative Solution of Mesh Constrained Optimal Control Problems with Two-Level Mesh Approximations of Parabolic State Equation, Journal of Applied Mathematics and Physics, Volume 06 (2018) no. 01, p. 58 | DOI:10.4236/jamp.2018.61007
  • Sriramkrishnan Muralikrishnan; Minh-Binh Tran; Tan Bui-Thanh An improved iterative HDG approach for partial differential equations, Journal of Computational Physics, Volume 367 (2018), p. 295 | DOI:10.1016/j.jcp.2018.04.033
  • Benjamin W. Ong; Ronald D. Haynes; Kyle Ladd Algorithm 965, ACM Transactions on Mathematical Software, Volume 43 (2017) no. 1, p. 1 | DOI:10.1145/2964377
  • Takafumi Sekine; Takao Tsuji; Tsutomu Oyama; Frederic Magoules; Kenko Uchida, 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia) (2016), p. 1177 | DOI:10.1109/isgt-asia.2016.7796552
  • A Lapin; A Romanenko Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem, IOP Conference Series: Materials Science and Engineering, Volume 158 (2016), p. 012059 | DOI:10.1088/1757-899x/158/1/012059
  • Yunjie Chen; Seyit Kale; Jonathan Weare; Aaron R. Dinner; Benoît Roux Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics – Monte Carlo Canonical Propagation Algorithm, Journal of Chemical Theory and Computation, Volume 12 (2016) no. 4, p. 1449 | DOI:10.1021/acs.jctc.5b00706
  • Jun Liu; Yan Wang; Rongjian Li A Hybrid Algorithm Based on Optimal Quadratic Spline Collocation and Parareal Deferred Correction for Parabolic PDEs, Mathematical Problems in Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/6943079
  • Mohamed Kamel Riahi A new approach to improve ill-conditioned parabolic optimal control problem via time domain decomposition, Numerical Algorithms, Volume 72 (2016) no. 3, p. 635 | DOI:10.1007/s11075-015-0060-0
  • Efstratios Gallopoulos; Bernard Philippe; Ahmed H. Sameh Matrix Functions and the Determinant, Parallelism in Matrix Computations (2016), p. 409 | DOI:10.1007/978-94-017-7188-7_12
  • Jehanzeb Hameed Chaudhry; Don Estep; Simon Tavener; Varis Carey; Jeff Sandelin A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 5, p. 2974 | DOI:10.1137/16m1079014
  • Martin J. Gander; Martin Neumüller Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 4, p. A2173 | DOI:10.1137/15m1046605
  • Stefan Ulbrich Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization, Multiple Shooting and Time Domain Decomposition Methods, Volume 9 (2015), p. 203 | DOI:10.1007/978-3-319-23321-5_8
  • Washington da Silva; Maria de Castro; Carlos de Moura, Anais do XV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2014) (2014), p. 147 | DOI:10.5753/wscad.2014.15007
  • Anne-Marie Baudron; Jean-Jacques Lautard; Yvon Maday; Mohamed Kamel Riahi; Julien Salomon Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model, Journal of Computational Physics, Volume 279 (2014), p. 67 | DOI:10.1016/j.jcp.2014.08.037
  • Vishwas Rao; Adrian Sandu An adjoint-based scalable algorithm for time-parallel integration, Journal of Computational Science, Volume 5 (2014) no. 2, p. 76 | DOI:10.1016/j.jocs.2013.03.004
  • Natalia Kalinnik; Matthias Korch; Thomas Rauber Online auto-tuning for the time-step-based parallel solution of ODEs on shared-memory systems, Journal of Parallel and Distributed Computing, Volume 74 (2014) no. 8, p. 2722 | DOI:10.1016/j.jpdc.2014.03.006
  • Bo Song; Yao-Lin Jiang Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems, Numerical Algorithms, Volume 67 (2014) no. 3, p. 599 | DOI:10.1007/s11075-013-9810-z
  • Daniel Ruprecht Convergence of Parareal with spatial coarsening, PAMM, Volume 14 (2014) no. 1, p. 1031 | DOI:10.1002/pamm.201410490
  • Cui Cong; Xiao-Chuan Cai; Karl Gustafson Implicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential Equations, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 1, p. C1 | DOI:10.1137/12090410x
  • T. Carraro; M. Geiger; R. Rannacher Indirect Multiple Shooting for Nonlinear Parabolic Optimal Control Problems with Control Constraints, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 2, p. A452 | DOI:10.1137/120895809
  • Rolf Rannacher Model Reduction by Adaptive Discretization in Optimal Control, Trends in PDE Constrained Optimization, Volume 165 (2014), p. 251 | DOI:10.1007/978-3-319-05083-6_17
  • Yvon Maday; Mohamed-Kamel Riahi; Julien Salomon Parareal in Time Intermediate Targets Methods for Optimal Control Problems, Control and Optimization with PDE Constraints, Volume 164 (2013), p. 79 | DOI:10.1007/978-3-0348-0631-2_5
  • Xiaoying Dai; Claude Le Bris; Frédéric Legoll; Yvon Maday Symmetric parareal algorithms for Hamiltonian systems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 3, p. 717 | DOI:10.1051/m2an/2012046
  • Xiaoying Dai; Yvon Maday Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 1, p. A52 | DOI:10.1137/110861002
  • Frédéric Legoll; Tony Lelièvre; Giovanni Samaey A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 4, p. A1951 | DOI:10.1137/120872681
  • Martin J. Gander; Yao-Lin Jiang; Bo Song; Hui Zhang Analysis of Two Parareal Algorithms for Time-Periodic Problems, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 5, p. A2393 | DOI:10.1137/130909172
  • Eric J. Bylaska; Jonathan Q. Weare; John H. Weare Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations, The Journal of Chemical Physics, Volume 139 (2013) no. 7 | DOI:10.1063/1.4818328
  • Jun Liu; Yao-Lin Jiang A parareal algorithm based on waveform relaxation, Mathematics and Computers in Simulation, Volume 82 (2012) no. 11, p. 2167 | DOI:10.1016/j.matcom.2012.05.017
  • John W. Pearson; Martin Stoll; Andrew J. Wathen Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems, SIAM Journal on Matrix Analysis and Applications, Volume 33 (2012) no. 4, p. 1126 | DOI:10.1137/110847949
  • J.-C. Passieux; P. Ladevèze; D. Néron A scalable time–space multiscale domain decomposition method: adaptive time scale separation, Computational Mechanics, Volume 46 (2010) no. 4, p. 621 | DOI:10.1007/s00466-010-0504-2
  • Andrew J. Christlieb; Colin B. Macdonald; Benjamin W. Ong Parallel High-Order Integrators, SIAM Journal on Scientific Computing, Volume 32 (2010) no. 2, p. 818 | DOI:10.1137/09075740x
  • Tarek P. Mathew; Marcus Sarkis; Christian E. Schaerer Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems, SIAM Journal on Scientific Computing, Volume 32 (2010) no. 3, p. 1180 | DOI:10.1137/080717481
  • Pierluigi Amodio; Luigi Brugnano Parallel solution in time of ODEs: some achievements and perspectives, Applied Numerical Mathematics, Volume 59 (2009) no. 3-4, p. 424 | DOI:10.1016/j.apnum.2008.03.024
  • Julien Cortial; Charbel Farhat A time‐parallel implicit method for accelerating the solution of non‐linear structural dynamics problems, International Journal for Numerical Methods in Engineering, Volume 77 (2009) no. 4, p. 451 | DOI:10.1002/nme.2418
  • Stefan Engblom Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics, Multiscale Modeling Simulation, Volume 8 (2009) no. 1, p. 46 | DOI:10.1137/080733723
  • Guillaume Bal; Qi Wu Symplectic Parareal, Domain Decomposition Methods in Science and Engineering XVII, Volume 60 (2008), p. 401 | DOI:10.1007/978-3-540-75199-1_51
  • Hans Georg Bock; Volker Schulz Mathematical Aspects of CFD-based Optimization, Optimization and Computational Fluid Dynamics (2008), p. 61 | DOI:10.1007/978-3-540-72153-6_3
  • Martin J. Gander; Stefan Vandewalle On the Superlinear and Linear Convergence of the Parareal Algorithm, Domain Decomposition Methods in Science and Engineering XVI, Volume 55 (2007), p. 291 | DOI:10.1007/978-3-540-34469-8_34
  • Christian E. Schaerer; Tarek Mathew; Marcus Sarkis Block Iterative Algorithms for the Solution of Parabolic Optimal Control Problems, High Performance Computing for Computational Science - VECPAR 2006, Volume 4395 (2007), p. 452 | DOI:10.1007/978-3-540-71351-7_35
  • Martin J. Gander; Stefan Vandewalle Analysis of the Parareal Time‐Parallel Time‐Integration Method, SIAM Journal on Scientific Computing, Volume 29 (2007) no. 2, p. 556 | DOI:10.1137/05064607x
  • Matthias Heinkenschloss; Michael Herty Distributed Solution of Optimal Control Problems Governed by Parabolic Equations, Robust Optimization-Directed Design, Volume 81 (2006), p. 73 | DOI:10.1007/0-387-28654-3_4
  • Guillaume Bal On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations, Domain Decomposition Methods in Science and Engineering, Volume 40 (2005), p. 425 | DOI:10.1007/3-540-26825-1_43
  • Yvon Maday; Gabriel Turinici The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation, Domain Decomposition Methods in Science and Engineering, Volume 40 (2005), p. 441 | DOI:10.1007/3-540-26825-1_45
  • Gunnar Andreas Staff; Einar M. Rønquist Stability of the Parareal Algorithm, Domain Decomposition Methods in Science and Engineering, Volume 40 (2005), p. 449 | DOI:10.1007/3-540-26825-1_46
  • Yvon Maday; Gabriel Turinici Parallel in time algorithms for quantum control: Parareal time discretization scheme, International Journal of Quantum Chemistry, Volume 93 (2003) no. 3, p. 223 | DOI:10.1002/qua.10554
  • Y. Maday; G. Turinici, Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Volume 1 (2002), p. 62 | DOI:10.1109/cdc.2002.1184468

Cité par 86 documents. Sources : Crossref

Commentaires - Politique