[Version aléatoire isomorphique du théorème de Dvoretzky]
Soit K un corps convexe symétrique de
Let K be a symmetric convex body in
Accepté le :
Publié le :
Alexander Litvak 1 ; Piotr Mankiewicz 2 ; Nicole Tomczak-Jaegermann 1
@article{CRMATH_2002__335_4_345_0, author = {Alexander Litvak and Piotr Mankiewicz and Nicole Tomczak-Jaegermann}, title = {Randomized isomorphic {Dvoretzky} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--350}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02476-7}, language = {en}, }
Alexander Litvak; Piotr Mankiewicz; Nicole Tomczak-Jaegermann. Randomized isomorphic Dvoretzky theorem. Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 345-350. doi : 10.1016/S1631-073X(02)02476-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02476-7/
[1] Extremal properties of orthogonal parallelopipeds and their applications to the geometry of Banacj spaces, Math. USSR-Sb., Volume 64 (1989), pp. 85-96
[2] Some inequalities for Gaussian processes and applications, Israel J. Math., Volume 50 (1985), pp. 265-289
[3] An isomorphic Dvoretzky theorem for convex bodies, Studia Math., Volume 127 (1998), pp. 191-200
[4] Gaussian version of a theorem of Milman and Schechtman, Positivity, Volume 1 (1997), pp. 1-5
[5] Gaussian Random Functions, Math. Appl., 322, Kluwer Academic, Dordrecht, 1995
[6] Random aspects of high dimensional convex bodies, Geometric Aspects of Functional Analysis, Israeli Seminar, Lecture Notes in Math., 1795, Springer, 2000, pp. 169-191
[7] Geometry of families of random projections of symmetric convex bodies, Geom. Funct. Anal., Volume 11 (2001), pp. 1282-1326
[8] A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Funct. Anal. Appl., Volume 5 (1971), pp. 28-37 (English translation)
[9] Surprising geometric phenomena in high dimensional convexity theory, Proceedings of II European Congress of Mathematicians, Budapest, 1996
[10] Finite-Dimensional Normed Spaces, Lecture Notes in Math., 1200, Springer, Berlin, 1986
[11] An ‘isomorphic’ version of Dvoretzky's theorem, C. R. Acad. Sci. Paris, Série I, Volume 321 (1995), pp. 541-544
[12] Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J., Volume 90 (1997), pp. 73-93
[13] An ‘Isomorphic’ Version of Dvoretzky's Theorem, II; Convex Geometric Analysis, MSRI Publ., 34, Cambridge University Press, 1998 (pp. 159–164)
[14] The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, 1989
[15] John's decomposition: selecting a large part, Israel J. Math., Volume 122 (2001), pp. 253-277
Cité par Sources :
Commentaires - Politique