Comptes Rendus
Quelques calculs de la cohomologie de GL𝐍() et de la K-théorie de
Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 321-324.

Pour N=5 et N=6, nous calculons le complexe cellulaire défini par Voronoï à partir des formes quadratiques réelles de dimension N. Nous en déduisons l'homologie de GLN() à coefficients triviaux, à de petits nombres premiers près. Nous montrons aussi que K5()= et que K6() n'a que de la 3-torsion.

For N=5 and N=6, we compute the Voronoï cell complex attached to real N-dimensional quadratic forms, and we obtain the homology of GLN() with trivial coefficients, up to small primes. We also prove that K5()= and K6() has only 3-torsion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02481-0

Philippe Elbaz-Vincent 1 ; Herbert Gangl 2 ; Christophe Soulé 3

1 Laboratoire GTA., UMR CNRS 5030, CC51, Université Montpellier II, 34095 Montpellier cedex 5, France
2 MPI für Mathematik Bonn, Vivatsgasse 7, D-53111 Bonn, Allemagne
3 CNRS et IHÉS, 35, route de Chartres, 91440 Bures-sur-Yvette, France
@article{CRMATH_2002__335_4_321_0,
     author = {Philippe Elbaz-Vincent and Herbert Gangl and Christophe Soul\'e},
     title = {Quelques calculs de la cohomologie de $ \mathrm{GL}_{\mathbf{N}}\mathbf{(}\mathbb{Z}\mathbf{)}$ et de la {\protect\emph{K}-th\'eorie} de $ \mathbb{Z}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {321--324},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02481-0},
     language = {fr},
}
TY  - JOUR
AU  - Philippe Elbaz-Vincent
AU  - Herbert Gangl
AU  - Christophe Soulé
TI  - Quelques calculs de la cohomologie de $ \mathrm{GL}_{\mathbf{N}}\mathbf{(}\mathbb{Z}\mathbf{)}$ et de la K-théorie de $ \mathbb{Z}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 321
EP  - 324
VL  - 335
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02481-0
LA  - fr
ID  - CRMATH_2002__335_4_321_0
ER  - 
%0 Journal Article
%A Philippe Elbaz-Vincent
%A Herbert Gangl
%A Christophe Soulé
%T Quelques calculs de la cohomologie de $ \mathrm{GL}_{\mathbf{N}}\mathbf{(}\mathbb{Z}\mathbf{)}$ et de la K-théorie de $ \mathbb{Z}$
%J Comptes Rendus. Mathématique
%D 2002
%P 321-324
%V 335
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02481-0
%G fr
%F CRMATH_2002__335_4_321_0
Philippe Elbaz-Vincent; Herbert Gangl; Christophe Soulé. Quelques calculs de la cohomologie de $ \mathrm{GL}_{\mathbf{N}}\mathbf{(}\mathbb{Z}\mathbf{)}$ et de la K-théorie de $ \mathbb{Z}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 321-324. doi : 10.1016/S1631-073X(02)02481-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02481-0/

[1] D. Arlettaz The Hurewicz homomorphism in algebraic K-theory, J. Pure Appl. Algebra, Volume 71 (1991), pp. 1-12

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, The PARI/GP package, 1989–2001, Laboratoire A2X, Université Bordeaux I. Primary ftp site: ftp://megrez.math.u-bordeaux.fr/pub/pari. Home Page: http://www.parigp-home.de

[3] A. Borel; J.-P. Serre Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491

[4] K. Brown Cohomology of Groups, Graduate Texts in Math., 87, Springer, New York, 1982

[5] D.-O. Jaquet, Énumération complète des classes de formes parfaites en dimension 7, Thèse de doctorat, Université de Neuchâtel, 1991

[6] R. Lee; R.H. Szczarba On the torsion in K4() and K5(), Duke Math. J., Volume 45 (1978), pp. 101-129

[7] W. Plesken; B. Souvignier Computing isometries of lattices, J. Symbolic Comput., Volume 24 (1997), pp. 327-334

[8] D. Quillen Higher algebraic K-theory I, Lecture Notes in Math., 341, Springer, 1973, pp. 85-147

[9] D. Quillen Finite generation of the groups Ki of rings of algebraic integers, Lecture Notes in Math., 341, Springer, 1973, pp. 179-198

[10] J. Rognes K4() is the trivial group, Topology, Volume 39 (2000), pp. 267-281

[11] J. Rognes; C. Weibel Two-primary algebraic K-theory of rings of integers in number fields (with an appendix by M. Kolster), J. Amer. Math. Soc., Volume 13 (2000), pp. 1-54

[12] C. Soulé The cohomology of SL3(), Topology, Volume 17 (1978), pp. 1-22

[13] C. Soulé Addendum to the article [6] “On the torsion in K*(), Duke Math. J., Volume 45 (1978), pp. 131-132

[14] C. Soulé On the 3-torsion in K4(), Topology, Volume 39 (2000), pp. 259-265

[15] G. Voronoï Nouvelles applications des paramètres continus à la théorie des formes quadratiques I, J. Crelle, Volume 133 (1907), pp. 97-178

[16] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.2, 2000. http://www.gap-system.org

  • Avner Ash; Paul E. Gunnells; Mark McConnell Cohomology with twisted one-dimensional coefficients for congruence subgroups of SL4(Z) and Galois representations, Journal of Algebra, Volume 553 (2020), p. 211 | DOI:10.1016/j.jalgebra.2020.01.024
  • A. Ash; P. E. Gunnells; M. McConnell; D. Yasaki ON THE GROWTH OF TORSION IN THE COHOMOLOGY OF ARITHMETIC GROUPS, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 2, p. 537 | DOI:10.1017/s1474748018000117
  • Mathieu Dutour Sikirić; Herbert Gangl; Paul E. Gunnells; Jonathan Hanke; Achill Schürmann; Dan Yasaki On the topological computation of K4 of the Gaussian and Eisenstein integers, Journal of Homotopy and Related Structures, Volume 14 (2019) no. 1, p. 281 | DOI:10.1007/s40062-018-0212-8
  • Mathieu Dutour Sikirić; Herbert Gangl; Paul E. Gunnells; Jonathan Hanke; Achill Schürmann; Dan Yasaki On the cohomology of linear groups over imaginary quadratic fields, Journal of Pure and Applied Algebra, Volume 220 (2016) no. 7, p. 2564 | DOI:10.1016/j.jpaa.2015.12.002
  • Philippe Elbaz-Vincent; Herbert Gangl; Christophe Soulé Perfect forms, K-theory and the cohomology of modular groups, Advances in Mathematics, Volume 245 (2013), p. 587 | DOI:10.1016/j.aim.2013.06.014
  • Bjørn Ian Dundas; Thomas G. Goodwillie; Randy McCarthy Algebraic K-Theory, The Local Structure of Algebraic K-Theory, Volume 18 (2013), p. 1 | DOI:10.1007/978-1-4471-4393-2_1
  • Mathieu Dutour Sikirić; Graham Ellis; Achill Schürmann On the integral homology of PSL4(Z) and other arithmetic groups, Journal of Number Theory, Volume 131 (2011) no. 12, p. 2368 | DOI:10.1016/j.jnt.2011.05.018
  • Achill Schürmann Perfect, strongly eutactic lattices are periodic extreme, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2546 | DOI:10.1016/j.aim.2010.05.002
  • Miho Aoki On some exact sequences in the theory of cyclotomic fields, Journal of Algebra, Volume 320 (2008) no. 12, p. 4156 | DOI:10.1016/j.jalgebra.2008.09.017
  • Max Karoubi Bott Periodicity in Topological, Algebraic and Hermitian K-Theory, Handbook of K-Theory (2005), p. 111 | DOI:10.1007/978-3-540-27855-9_4
  • Charles Weibel Algebraic K-Theory of Rings of Integers in Local and Global Fields, Handbook of K-Theory (2005), p. 139 | DOI:10.1007/978-3-540-27855-9_5

Cité par 11 documents. Sources : Crossref

Commentaires - Politique