[Asymptotiques spectrales pour des opérateurs magnétiques de Schrödinger avec des potentiels électriques qui décroissent rapidement à l'infini]
On considère l'opérateur de Schrödinger H(V) agissant dans ou avec un champ magnétique constant et un potentiel électrique V qui génériquement décroı̂t à l'infini exponentiellement vite ou est à un support compact. On étudie le comportement asymptotique du spectre discret de H(V) en voisinage des points de la frontière de son spectre essentiel. Si la décroissance de V est gaussienne ou plus rapide ce comportement ne se décrit pas par les formules semi-classiques connues dans le cas où V décroı̂t comme une puissance.
We consider the Schrödinger operator H(V) on or with constant magnetic field, and a class of electric potentials V which typically decay at infinity exponentially fast or have a compact support. We investigate the asymptotic behaviour of the discrete spectrum of H(V) near the boundary points of its essential spectrum. If V decays like a Gaussian or faster, this behaviour is non-classical in the sense that it is not described by the quasi-classical formulas known for the case where V admits a power-like decay.
Accepté le :
Publié le :
Georgi D. Raikov 1 ; Simone Warzel 2
@article{CRMATH_2002__335_8_683_0, author = {Georgi D. Raikov and Simone Warzel}, title = {Spectral asymptotics for magnetic {Schr\"odinger} operators with rapidly decreasing electric potentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02554-2}, language = {en}, }
TY - JOUR AU - Georgi D. Raikov AU - Simone Warzel TI - Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials JO - Comptes Rendus. Mathématique PY - 2002 SP - 683 EP - 688 VL - 335 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02554-2 LA - en ID - CRMATH_2002__335_8_683_0 ER -
%0 Journal Article %A Georgi D. Raikov %A Simone Warzel %T Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials %J Comptes Rendus. Mathématique %D 2002 %P 683-688 %V 335 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02554-2 %G en %F CRMATH_2002__335_8_683_0
Georgi D. Raikov; Simone Warzel. Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 683-688. doi : 10.1016/S1631-073X(02)02554-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02554-2/
[1] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883
[2] On the spectrum of singular boundary value problems, Amer. Math. Soc. Transl., Volume 53 (1966), pp. 23-80
[3] The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians, Ann. Phys. (N.Y.), Volume 108 (1977), pp. 69-78
[4] An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954
[5] Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials, J. Math. Phys., Volume 42 (2001), pp. 5626-5641
[6] Microlocal Analysis and Precise Spectral Asymptotics, Springer, Berlin, 1998
[7] M. Melgaard, G. Rozenblum, Eigenvalue asymptotics for even-dimensional perturbed Dirac and Schrödinger operators with constant magnetic fields, Preprint mp_arc 02-140, March 2002
[8] Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips, Comm. Partial Differential Equations, Volume 15 (1990), pp. 407-434
[9] Border-line eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential, Integral Equations Operator Theory, Volume 14 (1991), pp. 875-888
[10] G.D. Raikov, S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Preprint , January 2002 | arXiv
[11] Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field. I, J. Soviet Math., Volume 35 (1986), pp. 2201-2212
[12] Asymptotics of the energy of bound states of the Schrödinger operator in the presence of electric and homogeneous magnetic fields, Sel. Math. Soviet., Volume 5 (1986), pp. 297-306
[13] Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., Volume 25 (1988), pp. 633-647
Cité par Sources :
Commentaires - Politique