[Asymptotiques spectrales pour des opérateurs magnétiques de Schrödinger avec des potentiels électriques qui décroissent rapidement à l'infini]
On considère l'opérateur de Schrödinger H(V) agissant dans
We consider the Schrödinger operator H(V) on
Accepté le :
Publié le :
Georgi D. Raikov 1 ; Simone Warzel 2
@article{CRMATH_2002__335_8_683_0, author = {Georgi D. Raikov and Simone Warzel}, title = {Spectral asymptotics for magnetic {Schr\"odinger} operators with rapidly decreasing electric potentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02554-2}, language = {en}, }
TY - JOUR AU - Georgi D. Raikov AU - Simone Warzel TI - Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials JO - Comptes Rendus. Mathématique PY - 2002 SP - 683 EP - 688 VL - 335 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02554-2 LA - en ID - CRMATH_2002__335_8_683_0 ER -
%0 Journal Article %A Georgi D. Raikov %A Simone Warzel %T Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials %J Comptes Rendus. Mathématique %D 2002 %P 683-688 %V 335 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02554-2 %G en %F CRMATH_2002__335_8_683_0
Georgi D. Raikov; Simone Warzel. Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 683-688. doi : 10.1016/S1631-073X(02)02554-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02554-2/
[1] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883
[2] On the spectrum of singular boundary value problems, Amer. Math. Soc. Transl., Volume 53 (1966), pp. 23-80
[3] The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians, Ann. Phys. (N.Y.), Volume 108 (1977), pp. 69-78
[4] An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954
[5] Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials, J. Math. Phys., Volume 42 (2001), pp. 5626-5641
[6] Microlocal Analysis and Precise Spectral Asymptotics, Springer, Berlin, 1998
[7] M. Melgaard, G. Rozenblum, Eigenvalue asymptotics for even-dimensional perturbed Dirac and Schrödinger operators with constant magnetic fields, Preprint mp_arc 02-140, March 2002
[8] Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips, Comm. Partial Differential Equations, Volume 15 (1990), pp. 407-434
[9] Border-line eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential, Integral Equations Operator Theory, Volume 14 (1991), pp. 875-888
[10] G.D. Raikov, S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Preprint , January 2002 | arXiv
[11] Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field. I, J. Soviet Math., Volume 35 (1986), pp. 2201-2212
[12] Asymptotics of the energy of bound states of the Schrödinger operator in the presence of electric and homogeneous magnetic fields, Sel. Math. Soviet., Volume 5 (1986), pp. 297-306
[13] Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., Volume 25 (1988), pp. 633-647
- Wegner estimate for Landau-breather Hamiltonians, Journal of Mathematical Physics, Volume 57 (2016) no. 7, p. 072102 | DOI:10.1063/1.4955029 | Zbl:1342.81128
-
-approximation of the integrated density of states for Schrödinger operators with finite local complexity, Integral Equations and Operator Theory, Volume 69 (2011) no. 2, pp. 217-232 | DOI:10.1007/s00020-010-1831-6 | Zbl:1208.35025 - Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamiltonian, Advances in Mathematical Physics, Volume 2009 (2009), p. 15 (Id/No 873704) | DOI:10.1155/2009/873704 | Zbl:1201.81055
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier