[Le seuil de 3-XORSAT]
We prove the existence of a threshold phenomenon regarding the random 3-XORSAT problem (or more generally k-XORSAT). We provide the value of the threshold as the solution of two transcendental equations. These results confirm rigorously those obtained by physicists using the one-step replica symmetry breaking method and thus give for the first time the proof of the validity of this method for a problem of the class of satisfiability problems.
Nous démontrons l'existence d'un phénomène de seuil pour le problème 3-XORSAT aléatoire (et plus généralement k-XORSAT). Nous fournissons la valeur du seuil comme solution de deux équations transcendantes. Ces résultats confirment rigoureusement ceux obtenus par des physiciens au moyen de la méthode des répliques à un pas de brisure de symétrie et apportent ainsi pour la première fois une preuve de la validité de la méthode des répliques avec brisure sur un problème de la classe des problèmes de satisfaisabilité.
Accepté le :
Publié le :
Olivier Dubois 1 ; Jacques Mandler 1
@article{CRMATH_2002__335_11_963_0, author = {Olivier Dubois and Jacques Mandler}, title = {The {3-XORSAT} threshold}, journal = {Comptes Rendus. Math\'ematique}, pages = {963--966}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02563-3}, language = {en}, }
Olivier Dubois; Jacques Mandler. The 3-XORSAT threshold. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 963-966. doi : 10.1016/S1631-073X(02)02563-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02563-3/
[1] On the satisfiability and maximum satisfiability of random 3-CNF formulas, Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, Austin, TX, 1993, pp. 322-330
[2] N. Creignou, H. Daudé, O. Dubois, Approximating the satisfiability threshold for random k-XOR-formulas, 2001, submitted
[3] Phys. Rev. Lett., 87 (2001), pp. 12713-127209
[4] R. Monasson, personal communication
[5] M. Talagrand, Spin Glasses: A Challenge for Mathematicians, in preparation
[6] Asymptotic estimates of Stirling numbers, Studies Appl. Math., Volume 89 (1993), pp. 233-243
[7] Differential equations for random processes and random graphs, Ann. Appl. Probab., Volume 5 (1995), pp. 1217-1235
- The rank of sparse symmetric matrices over arbitrary fields, Random Structures Algorithms, Volume 66 (2025) no. 1, p. 66 (Id/No e21258) | DOI:10.1002/rsa.21258 | Zbl:1557.05156
- One-step replica symmetry breaking of random regular NAE-SAT. II, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 63 (Id/No 61) | DOI:10.1007/s00220-023-04868-6 | Zbl:7811482
- , 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) (2023), p. 2369 | DOI:10.1109/focs57990.2023.00145
- , Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications (2023), p. 298 | DOI:10.5817/cz.muni.eurocomb23-041
- , Proceedings of the ACM SIGCOMM 2023 Conference (2023), p. 220 | DOI:10.1145/3603269.3604865
- The rank of sparse random matrices, Random Structures Algorithms, Volume 62 (2023) no. 1, p. 68 | DOI:10.1002/rsa.21085
- Lower bounds on the chromatic number of random graphs, Combinatorica, Volume 42 (2022) no. 5, pp. 617-658 | DOI:10.1007/s00493-021-4236-z | Zbl:1524.05283
- How we are leading a 3-XORSAT challenge: From the energy landscape to the algorithm and its efficient implementation on GPUs (a), Europhysics Letters, Volume 133 (2021) no. 6, p. 60005 | DOI:10.1209/0295-5075/133/60005
- Entropic barriers as a reason for hardness in both classical and quantum algorithms, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043015
- The number of satisfying assignments of random 2-SAT formulas, Random Structures Algorithms, Volume 58 (2021) no. 4, pp. 609-647 | DOI:10.1002/rsa.20993 | Zbl:1522.68375
- The satisfiability threshold for random linear equations, Combinatorica, Volume 40 (2020) no. 2, pp. 179-235 | DOI:10.1007/s00493-019-3897-3 | Zbl:1463.05507
- The replica symmetric phase of random constraint satisfaction problems, Combinatorics, Probability and Computing, Volume 29 (2020) no. 3, pp. 346-422 | DOI:10.1017/s0963548319000440 | Zbl:1504.68152
- On the uniformity of the approximation for
-associated Stirling numbers of the second kind, Contributions to Discrete Mathematics, Volume 15 (2020) no. 3, pp. 25-42 | DOI:10.11575/cdm.v15i3.68674 | Zbl:1493.11051 - Fast scalable construction of ([compressed] static | minimal perfect hash) functions, Information and Computation, Volume 273 (2020), p. 17 (Id/No 104517) | DOI:10.1016/j.ic.2020.104517 | Zbl:1446.68038
- Algorithms, bounds, and strategies for entangled XOR games, 10th innovations in theoretical computer science conference, ITCS 2019, January 10–12, 2019, San Diego, CA, USA, Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2019, p. 18 (Id/No 10) | DOI:10.4230/lipics.itcs.2019.10 | Zbl:1542.68064
- Dense peelable random uniform hypergraphs, 27th annual European symposium on algorithms, ESA 2019, Munich/Garching, Germany, September 9–11, 2019. Proceedings, Wadern: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, p. 16 (Id/No 38) | DOI:10.4230/lipics.esa.2019.38 | Zbl:1547.68577
- Information-theoretic and algorithmic thresholds for group testing, 46th international colloquium on automata, languages, and programming, ICALP 2019, Patras, Greece, July 9–12, 2019. Proceedings, Wadern: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, p. 14 (Id/No 43) | DOI:10.4230/lipics.icalp.2019.43 | Zbl:1552.62053
- Minors of a random binary matroid, Random Structures Algorithms, Volume 55 (2019) no. 4, pp. 865-880 | DOI:10.1002/rsa.20881 | Zbl:1433.05276
- , 2018 Data Compression Conference (2018), p. 52 | DOI:10.1109/dcc.2018.00013
- Inside the clustering window for random linear equations, Random Structures Algorithms, Volume 52 (2018) no. 2, pp. 197-218 | DOI:10.1002/rsa.20740 | Zbl:1396.60008
- Optimization on sparse random hypergraphs and spin glasses, Random Structures Algorithms, Volume 53 (2018) no. 3, pp. 504-536 | DOI:10.1002/rsa.20774 | Zbl:1397.05121
- An Exact Algorithm Exhibiting RS–RSB/Easy–Hard Correspondence for the Maximum Independent Set Problem, Journal of the Physical Society of Japan, Volume 86 (2017) no. 7, p. 073001 | DOI:10.7566/jpsj.86.073001
- Network models: structure and function. Abstracts from the workshop held December 10–16, 2017, Oberwolfach Rep. 14, No. 4, 3427-3470, 2017 | DOI:10.4171/owr/2017/57 | Zbl:1409.00060
- The asymptotic
-SAT threshold, Advances in Mathematics, Volume 288 (2016), pp. 985-1068 | DOI:10.1016/j.aim.2015.11.007 | Zbl:1394.60007 - The satisfiability threshold for
-XORSAT, Combinatorics, Probability and Computing, Volume 25 (2016) no. 2, pp. 236-268 | DOI:10.1017/s0963548315000097 | Zbl:1372.68193 - The scaling window of the model
- -CSP, Journal of Mathematical Analysis and Applications, Volume 434 (2016) no. 1, pp. 342-352 | DOI:10.1016/j.jmaa.2015.09.015 | Zbl:1334.82035 - A case study in programming a quantum annealer for hard operational planning problems, Quantum Information Processing, Volume 14 (2015) no. 1, pp. 1-36 | DOI:10.1007/s11128-014-0892-x | Zbl:1311.81084
- The set of solutions of random XORSAT formulae, The Annals of Applied Probability, Volume 25 (2015) no. 5, pp. 2743-2808 | DOI:10.1214/14-aap1060 | Zbl:1341.68061
- Rank deficiency in sparse random GF
matrices, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2458 - Upper-bounding the
-colorability threshold by counting covers, The Electronic Journal of Combinatorics, Volume 20 (2013) no. 3, p. research | Zbl:1298.05285 - Satisfiability thresholds beyond
-XORSAT, Computer science – theory and applications. 7th international computer science symposium in Russia, CSR 2012, Nizhny Novgorod, Russia, July 3–7, 2012. Proceedings, Berlin: Springer, 2012, pp. 148-159 | DOI:10.1007/978-3-642-30642-6_15 | Zbl:1360.68779 - The condensation transition in random hypergraph 2-coloring, Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012., Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York, NY: Association for Computing Machinery (ACM), 2012, pp. 241-250 | Zbl:1421.68068
- The MAX-CUT of sparse random graphs, Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012., Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York, NY: Association for Computing Machinery (ACM), 2012, pp. 265-271 | Zbl:1423.05150
- The set of solutions of random XORSAT formulae, Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012., Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York, NY: Association for Computing Machinery (ACM), 2012, pp. 760-779 | Zbl:1423.68211
- Maximum matchings in random bipartite graphs and the space utilization of cuckoo hash tables, Random Structures Algorithms, Volume 41 (2012) no. 3, pp. 334-364 | DOI:10.1002/rsa.20427 | Zbl:1252.05175
- The Satisfiability Threshold for a Seemingly Intractable Random Constraint Satisfaction Problem, SIAM Journal on Discrete Mathematics, Volume 26 (2012) no. 2, p. 768 | DOI:10.1137/090777268
- Exact thresholds for DPLL on random XOR-SAT and NP-complete extensions of XOR-SAT, Theoretical Computer Science, Volume 421 (2012), pp. 25-55 | DOI:10.1016/j.tcs.2011.11.014 | Zbl:1280.68237
- Random 2 XORSAT phase transition, Algorithmica, Volume 59 (2011) no. 1, pp. 48-65 | DOI:10.1007/s00453-009-9308-1 | Zbl:1206.68285
- When does the giant component bring unsatisfiability?, Combinatorica, Volume 28 (2008) no. 6, pp. 693-734 | DOI:10.1007/s00493-008-2123-5 | Zbl:1195.05077
- Random subcubes as a toy model for constraint satisfaction problems, Journal of Statistical Physics, Volume 131 (2008) no. 6, pp. 1121-1138 | DOI:10.1007/s10955-008-9543-x | Zbl:1214.82045
- Sharp thresholds for constraint satisfaction problems and homomorphisms, Random Structures Algorithms, Volume 33 (2008) no. 3, pp. 310-332 | DOI:10.1002/rsa.20225 | Zbl:1182.05110
- Pairs of SAT-assignments in random Boolean formulæ, Theoretical Computer Science, Volume 393 (2008) no. 1-3, pp. 260-279 | DOI:10.1016/j.tcs.2008.01.005 | Zbl:1136.68049
- An efficient approach to solving random
-SAT problems, Journal of Automated Reasoning, Volume 37 (2006) no. 4, pp. 261-276 | DOI:10.1007/s10817-006-9025-2 | Zbl:1113.68099 - Geometrical organization of solutions to random linear Boolean equations, Journal of Statistical Mechanics: Theory and Experiment, Volume 2006 (2006) no. 10, p. 21 (Id/No p10007) | DOI:10.1088/1742-5468/2006/10/p10007 | Zbl:1456.94146
- The satisfiability threshold for randomly generated binary constraint satisfaction problems, Random Structures Algorithms, Volume 28 (2006) no. 3, p. 323 | DOI:10.1002/rsa.20118
- Many hard examples in exact phase transitions, Theoretical Computer Science, Volume 355 (2006) no. 3, pp. 291-302 | DOI:10.1016/j.tcs.2006.01.001 | Zbl:1088.68163
- Combinatorial sharpness criterion and phase transition classification for random CSPs, Information and Computation, Volume 190 (2004) no. 2, pp. 220-238 | DOI:10.1016/j.ic.2004.01.002 | Zbl:1085.68151
- Random MAX SAT, random MAX CUT, and their phase transitions, Random Structures Algorithms, Volume 24 (2004) no. 4, pp. 502-545 | DOI:10.1002/rsa.20015 | Zbl:1077.68118
Cité par 48 documents. Sources : Crossref, zbMATH
Commentaires - Politique