Comptes Rendus
On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
[Sur les asymptotiques des solutions globales des équations paraboliques sémi-linéaires d'ordre supérieur dans le cas surcritique]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 805-810.

On considère le comportement asymptotique des solutions globales bornées du problème de Cauchy pour l'équation parabolique sémi-linéaire d'ordre 2m ut=−(−Δ)mu+|u|p in RN×R+, u(x,0)=u0X=L1(RN)∩L(RN), où m>1, p>1. On vérifie que dans le cas surcritique de Fujita p>pF=1+2m/N toute petite solution globale avec la donnée initiale vérifiant u0dx0, montre le comportement asymptotique quand t→∞ défini par la solution fondamentale de l'opérateur linéaire parabolique, à la différence du cas p]1,pF] quand la solution peut exploser pour la donnée initiale arbitrairement petite. Le spectre discret des pistes possibles et la suite correspondante des exponents critiques {pl=1+2m/(l+N),l=0,1,2,...}, où p0=pF, sont descriptes.

We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2mth order parabolic equation ut=−(−Δ)mu+|u|p in RN×R+, where m>1, p>1, with bounded integrable initial data u0. We prove that in the supercritical Fujita range p>pF=1+2m/N any small global solution with nonnegative initial mass, u0dx0, exhibits as t→∞ the asymptotic behaviour given by the fundamental solution of the linear parabolic operator (unlike the case p]1,pF] where solutions can blow-up for any arbitrarily small initial data). A discrete spectrum of other possible asymptotic patterns and the corresponding monotone sequence of critical exponents {pl=1+2m/(l+N),l=0,1,2,...}, where p0=pF, are discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02567-0

Yu.V. Egorov 1 ; V.A. Galaktionov 2 ; V.A. Kondratiev 3 ; S.I. Pohozaev 4

1 Laboratoire des mathématiques pour l'industrie et la physique, UMR 5640, Université Paul Sabatier, UFR MIG, 118, route de Narbonne, 31062, Toulouse cedex 4, France
2 University of Bath, Department of Math. Sciences, Claverton Down, BA2 7AY, Bath, UK
3 Mehmat. Faculty, Lomonosov State Univer., Vorob'evy Gory, 119899 Moscow, Russia
4 Steklov Math. Institute, Gubkina 8, GSP-1, Moscow, Russia
@article{CRMATH_2002__335_10_805_0,
     author = {Yu.V. Egorov and V.A. Galaktionov and V.A. Kondratiev and S.I. Pohozaev},
     title = {On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {805--810},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02567-0},
     language = {en},
}
TY  - JOUR
AU  - Yu.V. Egorov
AU  - V.A. Galaktionov
AU  - V.A. Kondratiev
AU  - S.I. Pohozaev
TI  - On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 805
EP  - 810
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02567-0
LA  - en
ID  - CRMATH_2002__335_10_805_0
ER  - 
%0 Journal Article
%A Yu.V. Egorov
%A V.A. Galaktionov
%A V.A. Kondratiev
%A S.I. Pohozaev
%T On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
%J Comptes Rendus. Mathématique
%D 2002
%P 805-810
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02567-0
%G en
%F CRMATH_2002__335_10_805_0
Yu.V. Egorov; V.A. Galaktionov; V.A. Kondratiev; S.I. Pohozaev. On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 805-810. doi : 10.1016/S1631-073X(02)02567-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02567-0/

[1] S. Cui Local and global existence of solutions to semilinear parabolic initial value problems, Nonlin. Anal. TMA, Volume 43 (2001), pp. 293-323

[2] Yu.V. Egorov; V.A. Galaktionov; V.A. Kondratiev; S.I. Pohozaev On the necessary conditions of existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, Volume 330 (2000), pp. 93-98

[3] S.D. Eidelman Parabolic Systems, North-Holland, Amsterdam, 1969

[4] V.A. Galaktionov; S.P. Kurdyumov; A.A. Samarskii On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, Volume 54 (1986), pp. 421-455

[5] V.A. Galaktionov, S.I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., to appear

[6] V.A. Galaktionov; J.L. Vazquez Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal, Volume 100 (1991), pp. 435-462

[7] A. Gmira; L. Véron Large time behaviour of the solutions of a semilinear parabolic equation in RN, J. Differential Equations, Volume 53 (1984), pp. 258-276

[8] S. Kamin; L.A. Peletier Large time behaviour of solutions of the heat equation with absorption, Ann. Sc. Norm. Pisa Cl. Sci. (4), Volume 12 (1984), pp. 393-408

[9] I. Gohberg; S. Goldberg; M.A. Kaashoek Classes of Linear Operators, Vol. 1, Operator Theory: Advances and Applications, 49, Birkhäuser, Basel, 1990

[10] A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995

[11] L.A. Peletier; W.C. Troy Spatial Patterns. Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001

[12] A.A. Samarskii; V.A. Galaktionov; S.P. Kurdyumov; A.P. Mikhailov Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995

  • Huiling Niu; Abdoulaye Ali Youssouf; Binhua Feng On Blow-Up Solutions for the Fourth-Order Nonlinear Schrödinger Equation with Mixed Dispersions, Axioms, Volume 13 (2024) no. 3, p. 191 | DOI:10.3390/axioms13030191
  • Sarah Otsmane; Abdelaziz Mennouni New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions, Monatshefte für Mathematik, Volume 204 (2024) no. 2, pp. 261-280 | DOI:10.1007/s00605-024-01955-1 | Zbl:1541.35271
  • Yuqiu Wu; Jingxue Yin; Liangwei Wang; Zhengwen Tu Complicated asymptotic behavior of solutions for the fourth-order parabolic equation with absorption, Applied Mathematics Letters, Volume 120 (2021), p. 7 (Id/No 107278) | DOI:10.1016/j.aml.2021.107278 | Zbl:1475.35066
  • Sarah Otsmane Asymptotically self-similar global solutions for a complex-valued quadratic heat equation with a generalized kernel, Boletín de la Sociedad Matemática Mexicana. Third Series, Volume 27 (2021) no. 2, p. 53 (Id/No 46) | DOI:10.1007/s40590-021-00354-y | Zbl:1470.35108
  • Tarek Saanouni Inhomogeneous nonlinear high-order evolution equations, Boletín de la Sociedad Matemática Mexicana. Third Series, Volume 26 (2020) no. 3, pp. 1063-1095 | DOI:10.1007/s40590-020-00292-1 | Zbl:1451.35195
  • P. Álvarez-Caudevilla; A. Ortega Homotopy regularization for a high-order parabolic equation, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 1, p. 18 (Id/No 2) | DOI:10.1007/s00009-019-1424-9 | Zbl:1431.35058
  • Bibliography, Numerical Solutions of Three Classes of Nonlinear Parabolic Integro-Differential Equations (2016), p. 179 | DOI:10.1016/b978-0-12-804628-9.50009-0
  • Kazuhiro Ishige; Tatsuki Kawakami; Kanako Kobayashi Asymptotics for a nonlinear integral equation with a generalized heat kernel, Journal of Evolution Equations, Volume 14 (2014) no. 4-5, pp. 749-777 | DOI:10.1007/s00028-014-0237-3 | Zbl:1333.45010
  • Jan W. Cholewa; Anibal Rodriguez-Bernal Critical and supercritical higher order parabolic problems in RN, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 104 (2014), pp. 50-74 | DOI:10.1016/j.na.2014.03.013 | Zbl:1288.35281
  • Filippo Gazzola On the moments of solutions to linear parabolic equations involving the biharmonic operator, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3583 | DOI:10.3934/dcds.2013.33.3583
  • M. S. Agranovich; I. V. Astashova; L. A. Bagirov; V. V. Vlasov; V. V. Zhikov; Yu. S. Ilyashenko; V. V. Kozlov; A. A Kon'kov; S. I. Pokhozhaev; E. V. Radkevich; N. Kh. Rozov; I. N. Sergeev; A. L. Skubachevskii; G. A. Chechkin; A. S. Shamaev; T. A. Shaposhnikova Vladimir Alexandrovich Kondratiev. July 2, 1935–March 11, 2010, Journal of Mathematical Sciences (New York), Volume 190 (2013) no. 1, pp. 1-7 | DOI:10.1007/s10958-013-1243-7 | Zbl:1277.01013
  • I. V. Astashova; L. A. Bagirov; A. V. Filinovskii; G. V. Grishina; V. A. Il'in Vladimir Aleksandrovich Kondrat'ev, Differential Equations, Volume 46 (2010) no. 12, pp. 1807-1813 | DOI:10.1134/s0012266110120165 | Zbl:1209.01038
  • Filippo Gazzola; Hans-Christoph Grunau Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calculus of Variations and Partial Differential Equations, Volume 30 (2007) no. 3, pp. 389-415 | DOI:10.1007/s00526-007-0096-7 | Zbl:1131.35036
  • Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth, J. Math. Sci., New York 143, No. 4, 3183-3197; translation from Tr. Semin. Im. I. G. Petrovskogo 26, 3-26, 2007 | DOI:10.1007/s10958-007-0202-6 | Zbl:1511.01015
  • Олег Владимирович Бесов; Oleg Vladimirovich Besov; Арлен Михайлович Ильин; Arlen Mikhailovich Il'in; Владимир Александрович Ильин; Vladimir Aleksandrovich Il'in; Лев Дмитриевич Кудрявцев; Lev Dmitrievich Kudryavtsev; Сергей Михайлович Никольский; Sergei Mikhailovich Nikol'skii; Лев Васильевич Овсянников; Lev Vasil'evich Ovsyannikov; Энцо Митидиери; Enzo Mitidieri; Альберто Тесей; Alberto Tesei; Лаурент Верон; Laurent Veron Станислав Иванович Похожаев (к 70-летию со дня рождения), Успехи математических наук, Volume 61 (2006) no. 2, p. 177 | DOI:10.4213/rm1738
  • O. V. Besov; A. M. Il'in; V. A. Il'in; L. D. Kudryavtsev; E. Mitidieri; S. M. Nikol'skii; L. V. Ovsyannikov; A. Tesei; L. Veron Stanislav Ivanovich Pokhozhaev (a tribute in honor of his seventieth birthday), Differential Equations, Volume 41 (2005) no. 12, pp. 1659-1663 | DOI:10.1007/s10625-006-0001-8 | Zbl:1129.01306
  • V A Galaktionov; P J Harwin Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation, Nonlinearity, Volume 18 (2005) no. 2, p. 717 | DOI:10.1088/0951-7715/18/2/014
  • Victor A. Galaktionov; Petra J. Harwin Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations, Sturm-Liouville Theory (2005), p. 173 | DOI:10.1007/3-7643-7359-8_8
  • V. A. Galaktionov On higher-order semilinear parabolic equations with measures as initial data, Journal of the European Mathematical Society (JEMS), Volume 6 (2004) no. 2, pp. 193-205 | DOI:10.4171/jems/8 | Zbl:1131.35346
  • V A Galaktionov; J F Williams On very singular similarity solutions of a higher-order semilinear parabolic equation, Nonlinearity, Volume 17 (2004) no. 3, p. 1075 | DOI:10.1088/0951-7715/17/3/017
  • C. J. Budd; J. F. Williams; V. A. Galaktionov Self-Similar Blow-Up in Higher-Order Semilinear Parabolic Equations, SIAM Journal on Applied Mathematics, Volume 64 (2004) no. 5, p. 1775 | DOI:10.1137/s003613990241552x
  • Victor A. Galaktionov On a spectrum of blow–up patterns for a higher–order semilinear parabolic equation, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Volume 457 (2001) no. 2011, p. 1623 | DOI:10.1098/rspa.2000.0733

Cité par 22 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: