[Sur les asymptotiques des solutions globales des équations paraboliques sémi-linéaires d'ordre supérieur dans le cas surcritique]
On considère le comportement asymptotique des solutions globales bornées du problème de Cauchy pour l'équation parabolique sémi-linéaire d'ordre 2m ut=−(−Δ)mu+|u|p in RN×R+, u(x,0)=u0∈X=L1(RN)∩L∞(RN), où m>1, p>1. On vérifie que dans le cas surcritique de Fujita p>pF=1+2m/N toute petite solution globale avec la donnée initiale vérifiant
We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2mth order parabolic equation ut=−(−Δ)mu+|u|p in RN×R+, where m>1, p>1, with bounded integrable initial data u0. We prove that in the supercritical Fujita range p>pF=1+2m/N any small global solution with nonnegative initial mass,
Accepté le :
Publié le :
Yu.V. Egorov 1 ; V.A. Galaktionov 2 ; V.A. Kondratiev 3 ; S.I. Pohozaev 4
@article{CRMATH_2002__335_10_805_0, author = {Yu.V. Egorov and V.A. Galaktionov and V.A. Kondratiev and S.I. Pohozaev}, title = {On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range}, journal = {Comptes Rendus. Math\'ematique}, pages = {805--810}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02567-0}, language = {en}, }
TY - JOUR AU - Yu.V. Egorov AU - V.A. Galaktionov AU - V.A. Kondratiev AU - S.I. Pohozaev TI - On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range JO - Comptes Rendus. Mathématique PY - 2002 SP - 805 EP - 810 VL - 335 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(02)02567-0 LA - en ID - CRMATH_2002__335_10_805_0 ER -
%0 Journal Article %A Yu.V. Egorov %A V.A. Galaktionov %A V.A. Kondratiev %A S.I. Pohozaev %T On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range %J Comptes Rendus. Mathématique %D 2002 %P 805-810 %V 335 %N 10 %I Elsevier %R 10.1016/S1631-073X(02)02567-0 %G en %F CRMATH_2002__335_10_805_0
Yu.V. Egorov; V.A. Galaktionov; V.A. Kondratiev; S.I. Pohozaev. On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 805-810. doi : 10.1016/S1631-073X(02)02567-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02567-0/
[1] Local and global existence of solutions to semilinear parabolic initial value problems, Nonlin. Anal. TMA, Volume 43 (2001), pp. 293-323
[2] On the necessary conditions of existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, Volume 330 (2000), pp. 93-98
[3] Parabolic Systems, North-Holland, Amsterdam, 1969
[4] On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, Volume 54 (1986), pp. 421-455
[5] V.A. Galaktionov, S.I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., to appear
[6] Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal, Volume 100 (1991), pp. 435-462
[7] Large time behaviour of the solutions of a semilinear parabolic equation in RN, J. Differential Equations, Volume 53 (1984), pp. 258-276
[8] Large time behaviour of solutions of the heat equation with absorption, Ann. Sc. Norm. Pisa Cl. Sci. (4), Volume 12 (1984), pp. 393-408
[9] Classes of Linear Operators, Vol. 1, Operator Theory: Advances and Applications, 49, Birkhäuser, Basel, 1990
[10] Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995
[11] Spatial Patterns. Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001
[12] Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995
- On Blow-Up Solutions for the Fourth-Order Nonlinear Schrödinger Equation with Mixed Dispersions, Axioms, Volume 13 (2024) no. 3, p. 191 | DOI:10.3390/axioms13030191
- New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions, Monatshefte für Mathematik, Volume 204 (2024) no. 2, pp. 261-280 | DOI:10.1007/s00605-024-01955-1 | Zbl:1541.35271
- Complicated asymptotic behavior of solutions for the fourth-order parabolic equation with absorption, Applied Mathematics Letters, Volume 120 (2021), p. 7 (Id/No 107278) | DOI:10.1016/j.aml.2021.107278 | Zbl:1475.35066
- Asymptotically self-similar global solutions for a complex-valued quadratic heat equation with a generalized kernel, Boletín de la Sociedad Matemática Mexicana. Third Series, Volume 27 (2021) no. 2, p. 53 (Id/No 46) | DOI:10.1007/s40590-021-00354-y | Zbl:1470.35108
- Inhomogeneous nonlinear high-order evolution equations, Boletín de la Sociedad Matemática Mexicana. Third Series, Volume 26 (2020) no. 3, pp. 1063-1095 | DOI:10.1007/s40590-020-00292-1 | Zbl:1451.35195
- Homotopy regularization for a high-order parabolic equation, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 1, p. 18 (Id/No 2) | DOI:10.1007/s00009-019-1424-9 | Zbl:1431.35058
- Bibliography, Numerical Solutions of Three Classes of Nonlinear Parabolic Integro-Differential Equations (2016), p. 179 | DOI:10.1016/b978-0-12-804628-9.50009-0
- Asymptotics for a nonlinear integral equation with a generalized heat kernel, Journal of Evolution Equations, Volume 14 (2014) no. 4-5, pp. 749-777 | DOI:10.1007/s00028-014-0237-3 | Zbl:1333.45010
- Critical and supercritical higher order parabolic problems in
, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 104 (2014), pp. 50-74 | DOI:10.1016/j.na.2014.03.013 | Zbl:1288.35281 - On the moments of solutions to linear parabolic equations involving the biharmonic operator, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3583 | DOI:10.3934/dcds.2013.33.3583
- Vladimir Alexandrovich Kondratiev. July 2, 1935–March 11, 2010, Journal of Mathematical Sciences (New York), Volume 190 (2013) no. 1, pp. 1-7 | DOI:10.1007/s10958-013-1243-7 | Zbl:1277.01013
- Vladimir Aleksandrovich Kondrat'ev, Differential Equations, Volume 46 (2010) no. 12, pp. 1807-1813 | DOI:10.1134/s0012266110120165 | Zbl:1209.01038
- Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calculus of Variations and Partial Differential Equations, Volume 30 (2007) no. 3, pp. 389-415 | DOI:10.1007/s00526-007-0096-7 | Zbl:1131.35036
- Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth, J. Math. Sci., New York 143, No. 4, 3183-3197; translation from Tr. Semin. Im. I. G. Petrovskogo 26, 3-26, 2007 | DOI:10.1007/s10958-007-0202-6 | Zbl:1511.01015
- Станислав Иванович Похожаев (к 70-летию со дня рождения), Успехи математических наук, Volume 61 (2006) no. 2, p. 177 | DOI:10.4213/rm1738
- Stanislav Ivanovich Pokhozhaev (a tribute in honor of his seventieth birthday), Differential Equations, Volume 41 (2005) no. 12, pp. 1659-1663 | DOI:10.1007/s10625-006-0001-8 | Zbl:1129.01306
- Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation, Nonlinearity, Volume 18 (2005) no. 2, p. 717 | DOI:10.1088/0951-7715/18/2/014
- Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations, Sturm-Liouville Theory (2005), p. 173 | DOI:10.1007/3-7643-7359-8_8
- On higher-order semilinear parabolic equations with measures as initial data, Journal of the European Mathematical Society (JEMS), Volume 6 (2004) no. 2, pp. 193-205 | DOI:10.4171/jems/8 | Zbl:1131.35346
- On very singular similarity solutions of a higher-order semilinear parabolic equation, Nonlinearity, Volume 17 (2004) no. 3, p. 1075 | DOI:10.1088/0951-7715/17/3/017
- Self-Similar Blow-Up in Higher-Order Semilinear Parabolic Equations, SIAM Journal on Applied Mathematics, Volume 64 (2004) no. 5, p. 1775 | DOI:10.1137/s003613990241552x
- On a spectrum of blow–up patterns for a higher–order semilinear parabolic equation, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Volume 457 (2001) no. 2011, p. 1623 | DOI:10.1098/rspa.2000.0733
Cité par 22 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier