[Inégalités optimales de type Sobolev pour les dérivées fractionelles d'ordre supérieur]
Sur
On
Publié le :
Athanase Cotsiolis 1 ; Nikolaos Con. Tavoularis 1
@article{CRMATH_2002__335_10_801_0, author = {Athanase Cotsiolis and Nikolaos Con. Tavoularis}, title = {Sharp {Sobolev} type inequalities for higher fractional derivatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {801--804}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02576-1}, language = {en}, }
TY - JOUR AU - Athanase Cotsiolis AU - Nikolaos Con. Tavoularis TI - Sharp Sobolev type inequalities for higher fractional derivatives JO - Comptes Rendus. Mathématique PY - 2002 SP - 801 EP - 804 VL - 335 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(02)02576-1 LA - en ID - CRMATH_2002__335_10_801_0 ER -
Athanase Cotsiolis; Nikolaos Con. Tavoularis. Sharp Sobolev type inequalities for higher fractional derivatives. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 801-804. doi : 10.1016/S1631-073X(02)02576-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02576-1/
[1] Some Nonlinear Problems in Riemannian Geometry, Springer, 1998
[2] Problèmes isopèrimétriques et espaces de Sobolev, J. Differential Geom., Volume 11 (1976), pp. 573-598
[3] A. Cotsiolis, N. Tavoularis, Best constant for the embedding of the space
[4] Paneitz type operators and applications, Duke Math. J., Volume 104 (2000) no. 1, pp. 129-169
[5] Analysis, American Mathematical Society, 2001
[6] Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983), pp. 349-374
[7] Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372
[8] Best constant for the embedding of the space
- Global existence, uniqueness and
-bound of weak solutions of fractional time-space Keller-Segel system, Fractional Calculus Applied Analysis, Volume 28 (2025) no. 1, pp. 232-275 | DOI:10.1007/s13540-024-00353-6 | Zbl:7996715 - Existence and multiplicity of non-trivial solutions for fractional Schrödinger-Poisson systems with a combined nonlinearity, Journal of Elliptic and Parabolic Equations, Volume 10 (2024) no. 1, pp. 211-224 | DOI:10.1007/s41808-023-00258-0 | Zbl:1540.35450
- On the stability and spectral properties of the two-dimensional Brown-Ravenhall operator with a short-range potential, Annals of Physics, Volume 449 (2023), p. 20 (Id/No 169201) | DOI:10.1016/j.aop.2022.169201 | Zbl:1507.35216
- Strengthened fractional Sobolev type inequalities in Besov spaces, Potential Analysis, Volume 59 (2023) no. 4, pp. 2105-2121 | DOI:10.1007/s11118-022-10030-z | Zbl:1541.46016
- On Liouville type theorem for the steady fractional Navier-Stokes equations in
, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3, p. 6 (Id/No 81) | DOI:10.1007/s00021-022-00719-x | Zbl:1492.35190 - Existence results for a fractional Schrödinger-Poisson equation with concave-convex nonlinearity in
, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 3, pp. 1752-1766 | DOI:10.1002/mma.7887 | Zbl:1529.35550 - Maximum principles and ABP estimates to nonlocal Lane-Emden systems and some consequences, Advanced Nonlinear Studies, Volume 21 (2021) no. 3, pp. 697-715 | DOI:10.1515/ans-2021-2042 | Zbl:1472.35072
- Two nontrivial solutions for a nonhomogeneous fractional Schrödinger-Poisson equation in
, Boundary Value Problems, Volume 2020 (2020), p. 18 (Id/No 29) | DOI:10.1186/s13661-020-01335-2 | Zbl:1486.35430 - Global regularity for solutions of the three dimensional Navier-Stokes equation with almost two dimensional initial data, Nonlinearity, Volume 33 (2020) no. 10, pp. 5272-5323 | DOI:10.1088/1361-6544/ab9246 | Zbl:1458.35304
- On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expositiones Mathematicae, Volume 36 (2018) no. 1, pp. 32-77 | DOI:10.1016/j.exmath.2017.08.007 | Zbl:1396.46030
- Limit of fractional power Sobolev inequalities, Journal of Functional Analysis, Volume 274 (2018) no. 4, pp. 1177-1201 | DOI:10.1016/j.jfa.2017.08.022 | Zbl:1475.46034
- Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations, Applied Mathematics Letters, Volume 72 (2017), pp. 1-9 | DOI:10.1016/j.aml.2017.03.023 | Zbl:1398.35272
- A general fractional porous medium equation, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 9, pp. 1242-1284 | DOI:10.1002/cpa.21408 | Zbl:1248.35220
- Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 2, pp. 569-577 | DOI:10.1016/j.jmaa.2012.06.054 | Zbl:1254.26010
- On logarithmic Sobolev inequalities for higher order fractional derivatives, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 3, pp. 205-208 | DOI:10.1016/j.crma.2004.11.030 | Zbl:1095.26009
- Best constants for Sobolev inequalities for higher order fractional derivatives, Journal of Mathematical Analysis and Applications, Volume 295 (2004) no. 1, pp. 225-236 | DOI:10.1016/j.jmaa.2004.03.034 | Zbl:1084.26009
Cité par 16 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier