Comptes Rendus
Sharp Sobolev type inequalities for higher fractional derivatives
[Inégalités optimales de type Sobolev pour les dérivées fractionelles d'ordre supérieur]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 801-804.

Sur n, n⩾1 et n≠2, on établit l'existence de meilleurs constantes dans les inégalités de Sobolev pour les dérivées fractionelles d'ordre supérieur. Soit s un reel positif. Pour n>2s et q=2nn-2s toute fonction fHs(n) vérifie l'inégalité suivante

fq2Sn,s(-Δ)s/2f22,
Sn,s est la meilleure constante. L'opérateur (−Δ)s est defini dans les espaces de Fourier par (-Δ)s^f(k):=(2π|k|)2sf^(k).

On n, n⩾1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and q=2nn-2s any function fHs(n) satisfies

fq2Sn,s(-Δ)s/2f2'2
where the operator (−Δ)s in Fourier spaces is defined by (-Δ)s^f(k):=(2π|k|)2sf^(k).

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02576-1

Athanase Cotsiolis 1 ; Nikolaos Con. Tavoularis 1

1 Department of Mathematics, University of Patras, Patras 26110, Greece
@article{CRMATH_2002__335_10_801_0,
     author = {Athanase Cotsiolis and Nikolaos Con. Tavoularis},
     title = {Sharp {Sobolev} type inequalities for higher fractional derivatives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {801--804},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02576-1},
     language = {en},
}
TY  - JOUR
AU  - Athanase Cotsiolis
AU  - Nikolaos Con. Tavoularis
TI  - Sharp Sobolev type inequalities for higher fractional derivatives
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 801
EP  - 804
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02576-1
LA  - en
ID  - CRMATH_2002__335_10_801_0
ER  - 
%0 Journal Article
%A Athanase Cotsiolis
%A Nikolaos Con. Tavoularis
%T Sharp Sobolev type inequalities for higher fractional derivatives
%J Comptes Rendus. Mathématique
%D 2002
%P 801-804
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02576-1
%G en
%F CRMATH_2002__335_10_801_0
Athanase Cotsiolis; Nikolaos Con. Tavoularis. Sharp Sobolev type inequalities for higher fractional derivatives. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 801-804. doi : 10.1016/S1631-073X(02)02576-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02576-1/

[1] T. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer, 1998

[2] T. Aubin Problèmes isopèrimétriques et espaces de Sobolev, J. Differential Geom., Volume 11 (1976), pp. 573-598

[3] A. Cotsiolis, N. Tavoularis, Best constant for the embedding of the space Hs(n) into L2n/(n-2s)(n) and applications, in preparation

[4] Z. Djadli; E. Hebey; M. Ledoux Paneitz type operators and applications, Duke Math. J., Volume 104 (2000) no. 1, pp. 129-169

[5] E. Lieb; M. Loss Analysis, American Mathematical Society, 2001

[6] E. Lieb Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983), pp. 349-374

[7] G. Talenti Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372

[8] R.C.A.M. van der Vorst Best constant for the embedding of the space H2H01(Ω) into L2n/(n-4)(Ω), Differential Integral Equations, Volume 2 (1993) no. 2, pp. 259-270

  • Fei Gao; Liujie Guo; Xinyi Xie; Hui Zhan Global existence, uniqueness and L-bound of weak solutions of fractional time-space Keller-Segel system, Fractional Calculus Applied Analysis, Volume 28 (2025) no. 1, pp. 232-275 | DOI:10.1007/s13540-024-00353-6 | Zbl:7996715
  • M. Soluki; G. A. Afrouzi; S. H. Rasouli Existence and multiplicity of non-trivial solutions for fractional Schrödinger-Poisson systems with a combined nonlinearity, Journal of Elliptic and Parabolic Equations, Volume 10 (2024) no. 1, pp. 211-224 | DOI:10.1007/s41808-023-00258-0 | Zbl:1540.35450
  • Magno B. Alves; Oswaldo M. Del Cima; Daniel H. T. Franco On the stability and spectral properties of the two-dimensional Brown-Ravenhall operator with a short-range potential, Annals of Physics, Volume 449 (2023), p. 20 (Id/No 169201) | DOI:10.1016/j.aop.2022.169201 | Zbl:1507.35216
  • Pengtao Li; Rui Hu; Zhichun Zhai Strengthened fractional Sobolev type inequalities in Besov spaces, Potential Analysis, Volume 59 (2023) no. 4, pp. 2105-2121 | DOI:10.1007/s11118-022-10030-z | Zbl:1541.46016
  • Jiaqi Yang On Liouville type theorem for the steady fractional Navier-Stokes equations in R3, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3, p. 6 (Id/No 81) | DOI:10.1007/s00021-022-00719-x | Zbl:1492.35190
  • Ruiting Jiang; Fangping Guo; Chengbo Zhai Existence results for a fractional Schrödinger-Poisson equation with concave-convex nonlinearity in R3, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 3, pp. 1752-1766 | DOI:10.1002/mma.7887 | Zbl:1529.35550
  • Edir Junior Ferreira Leite Maximum principles and ABP estimates to nonlocal Lane-Emden systems and some consequences, Advanced Nonlinear Studies, Volume 21 (2021) no. 3, pp. 697-715 | DOI:10.1515/ans-2021-2042 | Zbl:1472.35072
  • Ruiting Jiang; Chengbo Zhai Two nontrivial solutions for a nonhomogeneous fractional Schrödinger-Poisson equation in R3, Boundary Value Problems, Volume 2020 (2020), p. 18 (Id/No 29) | DOI:10.1186/s13661-020-01335-2 | Zbl:1486.35430
  • Evan Miller Global regularity for solutions of the three dimensional Navier-Stokes equation with almost two dimensional initial data, Nonlinearity, Volume 33 (2020) no. 10, pp. 5272-5323 | DOI:10.1088/1361-6544/ab9246 | Zbl:1458.35304
  • Carlo Morosi; Livio Pizzocchero On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expositiones Mathematicae, Volume 36 (2018) no. 1, pp. 32-77 | DOI:10.1016/j.exmath.2017.08.007 | Zbl:1396.46030
  • Sun-Yung Alice Chang; Fang Wang Limit of fractional power Sobolev inequalities, Journal of Functional Analysis, Volume 274 (2018) no. 4, pp. 1177-1201 | DOI:10.1016/j.jfa.2017.08.022 | Zbl:1475.46034
  • Kexue Li Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations, Applied Mathematics Letters, Volume 72 (2017), pp. 1-9 | DOI:10.1016/j.aml.2017.03.023 | Zbl:1398.35272
  • Arturo De Pablo; Fernando Quirós; Ana Rodríguez; Juan Luis Vázquez A general fractional porous medium equation, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 9, pp. 1242-1284 | DOI:10.1002/cpa.21408 | Zbl:1248.35220
  • Hichem Hajaiej; Xinwei Yu; Zhichun Zhai Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 2, pp. 569-577 | DOI:10.1016/j.jmaa.2012.06.054 | Zbl:1254.26010
  • Athanase Cotsiolis; Nikolaos K. Tavoularis On logarithmic Sobolev inequalities for higher order fractional derivatives, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 3, pp. 205-208 | DOI:10.1016/j.crma.2004.11.030 | Zbl:1095.26009
  • Athanase Cotsiolis; Nikolaos K. Tavoularis Best constants for Sobolev inequalities for higher order fractional derivatives, Journal of Mathematical Analysis and Applications, Volume 295 (2004) no. 1, pp. 225-236 | DOI:10.1016/j.jmaa.2004.03.034 | Zbl:1084.26009

Cité par 16 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: