Comptes Rendus
On the exceptional series, and its descendants
[La série exceptionnelle, et sa descendance]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 877-881.

Many of the striking similarities which occur for the adjoint representation of groups in the exceptional series (cf. [1–3]) also occur for certain representations of specific reductive subgroups. The tensor algebras on these representations are easier to describe (cf. [4,5,7]), and may offer clues to the original situation.

The subgroups which occur form a Magic Triangle, which extends Freudenthal's Magic Square of Lie algebras. We describe these groups from the perspective of dual pairs, and their representations from the action of the dual pair on an exceptional Lie algebra.

Les articles [1–3] exhibent des ressemblances entre les propriétés des représentations adjointes des groupes de la série exceptionnelle. Nous obtenons des ressemblances analogues pour certaines représentations préférées de séries de sous-groupes. L'algèbre tensorielle de ces représentations est plus accessible (cf. [4,5,7]). Ceci pourrait aider à comprendre ce qui se passe.

Les sous-groupes en question forment un « triangle magique » qui prolonge le carré magique d'algèbres de Lie de Freudenthal. Nous décrivons ces sous-groupes en termes de paires duales, et leur représentations préférées en termes de leur action sur l'algèbre de Lie du groupe de la série exceptionnelle ambiant.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02590-6

Pierre Deligne 1 ; Benedict H. Gross 2

1 School of Mathematics, IAS, Princeton, NJ 08540, USA
2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{CRMATH_2002__335_11_877_0,
     author = {Pierre Deligne and Benedict H. Gross},
     title = {On the exceptional series, and its descendants},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {877--881},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02590-6},
     language = {en},
}
TY  - JOUR
AU  - Pierre Deligne
AU  - Benedict H. Gross
TI  - On the exceptional series, and its descendants
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 877
EP  - 881
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02590-6
LA  - en
ID  - CRMATH_2002__335_11_877_0
ER  - 
%0 Journal Article
%A Pierre Deligne
%A Benedict H. Gross
%T On the exceptional series, and its descendants
%J Comptes Rendus. Mathématique
%D 2002
%P 877-881
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02590-6
%G en
%F CRMATH_2002__335_11_877_0
Pierre Deligne; Benedict H. Gross. On the exceptional series, and its descendants. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 877-881. doi : 10.1016/S1631-073X(02)02590-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02590-6/

[1] A.M. Cohen; R. de Man Computational evidence for Deligne's conjecture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 427-432

[2] P. Deligne La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 321-326

[3] P. Deligne; R. de Man La série exceptionnelle de groupes de Lie II, C. R. Acad. Sci. Paris, Série I, Volume 323 (1996), pp. 577-582

[4] B. Gross; N. Wallach A distinguished family of unitary representations for the exceptional groups of real rank =4, Lie Theory and Geometry, Birkhäuser, 1994, pp. 289-304

[5] G.W. Schwarz Invariant theory of G2 and Spin7, Comment. Math. Helv., Volume 63 (1988), pp. 624-663

[6] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations, CAN, Amsterdam, 1992

[7] H. Wenzl Tensor categories of Lie type EN, Adv. Math. (2002)

  • Bruce Westbury Series of Representations, Lie Theory and Its Applications in Physics, Volume 473 (2025), p. 361 | DOI:10.1007/978-981-97-6453-2_28
  • Liudmila Bishler; Andrei Mironov On refined Vogel's universality, Physics Letters B, Volume 867 (2025), p. 139596 | DOI:10.1016/j.physletb.2025.139596
  • Spencer Leslie; Aaron Pollack Modular forms of half-integral weight on exceptional groups, Compositio Mathematica, Volume 160 (2024) no. 3, pp. 657-707 | DOI:10.1112/s0010437x23007686 | Zbl:7810325
  • Kimyeong Lee; Kaiwen Sun; Haowu Wang On intermediate exceptional series, Letters in Mathematical Physics, Volume 114 (2024) no. 5, p. 62 (Id/No 113) | DOI:10.1007/s11005-024-01861-5 | Zbl:7930033
  • Yongzhi Luan Lie algebra \(\mathfrak{e}_{7\frac{1}{2}}\) and Dynkin index, Communications in Algebra, Volume 51 (2023) no. 9, pp. 3929-3951 | DOI:10.1080/00927872.2023.2193633 | Zbl:1532.17009
  • Skip Garibaldi; Holger P. Petersson; Michel L. Racine Albert algebras over \(\mathbb{Z}\) and other rings, Forum of Mathematics, Sigma, Volume 11 (2023), p. 39 (Id/No e18) | DOI:10.1017/fms.2023.7 | Zbl:1527.17017
  • Maurice Chayet; Skip Garibaldi A class of continuous non-associative algebras arising from algebraic groups including \(E_8\), Forum of Mathematics, Sigma, Volume 9 (2021), p. 22 (Id/No e6) | DOI:10.1017/fms.2020.66 | Zbl:1485.17022
  • Benedict H. Gross; Skip Garibaldi Minuscule embeddings, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 5, pp. 987-1004 | DOI:10.1016/j.indag.2020.10.005 | Zbl:1542.20216
  • Pedro Liendo; Junchen Rong Seeking SUSY fixed points in the \(4-\epsilon\) expansion, Journal of High Energy Physics, Volume 2021 (2021) no. 12, p. 31 (Id/No 33) | DOI:10.1007/jhep12(2021)033 | Zbl:1521.81320
  • Roland Abuaf; Laurent Manivel Gradings of Lie algebras, magical spin geometries and matrix factorizations, Representation Theory, Volume 25 (2021), pp. 527-542 | DOI:10.1090/ert/573 | Zbl:1479.17032
  • Damon J. Binder; Slava Rychkov Deligne categories in lattice models and quantum field theory, or making sense of O(N) symmetry with non-integer N, Journal of High Energy Physics, Volume 2020 (2020) no. 4, p. 76 (Id/No 117) | DOI:10.1007/jhep04(2020)117 | Zbl:1436.81099
  • Atanas Iliev; Laurent Manivel Hyperkähler manifolds from the Tits – Freudenthal magic square, European Journal of Mathematics, Volume 5 (2019) no. 4, pp. 1139-1155 | DOI:10.1007/s40879-018-00313-4 | Zbl:1453.14093
  • Tomoyuki Arakawa; Anne Moreau Joseph ideals and lisse minimal \(w\)-algebras, Journal of the Institute of Mathematics of Jussieu, Volume 17 (2018) no. 2, pp. 397-417 | DOI:10.1017/s1474748016000025 | Zbl:1416.17014
  • Aaron Pollack The spin \(L\)-function on \(\mathrm{GSp}_{6}\) for Siegel modular forms, Compositio Mathematica, Volume 153 (2017) no. 7, pp. 1391-1432 | DOI:10.1112/s0010437x17007114 | Zbl:1382.11038
  • Ivan Cherednik; Ross Elliot Refined composite invariants of torus knots via DAHA, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 25 (2016) no. 2-3, pp. 433-471 | DOI:10.5802/afst.1501 | Zbl:1379.57008
  • Skip Garibaldi \(E_8\), the most exceptional group, Bulletin of the American Mathematical Society. New Series, Volume 53 (2016) no. 4, pp. 643-671 | DOI:10.1090/bull/1540 | Zbl:1398.20062
  • Kazuya Kawasetsu $\boldsymbol{\mathcal{W}}$-algebras with Non-admissible Levels and the Deligne Exceptional Series, International Mathematics Research Notices (2016), p. rnw240 | DOI:10.1093/imrn/rnw240
  • Predrag Cvitanović Tracks, Lie's, and Exceptional Magic, Frontiers in Number Theory, Physics, and Geometry II (2007), p. 133 | DOI:10.1007/978-3-540-30308-4_3
  • Sergei Krutelevich Jordan algebras, exceptional groups, and Bhargava composition, Journal of Algebra, Volume 314 (2007) no. 2, pp. 924-977 | DOI:10.1016/j.jalgebra.2007.02.060 | Zbl:1163.17032
  • J. M. Landsberg; L. Manivel The sextonions and \(E_{7\frac12}\), Advances in Mathematics, Volume 201 (2006) no. 1, pp. 143-179 | DOI:10.1016/j.aim.2005.02.001 | Zbl:1133.17007
  • J. M. Landsberg; L. Manivel A universal dimension formula for complex simple Lie algebras, Advances in Mathematics, Volume 201 (2006) no. 2, pp. 379-407 | DOI:10.1016/j.aim.2005.02.007 | Zbl:1151.17003
  • J. M. Landsberg; L. Manivel Series of Lie groups, Michigan Mathematical Journal, Volume 52 (2004) no. 2, pp. 453-479 | DOI:10.1307/mmj/1091112085 | Zbl:1165.17302
  • Bruce Westbury Invariant tensors and diagrams, International Journal of Modern Physics A, Volume 18 (2003), pp. 49-82 | DOI:10.1142/s0217751x03017968 | Zbl:1080.18501

Cité par 23 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: