[La série exceptionnelle, et sa descendance]
Many of the striking similarities which occur for the adjoint representation of groups in the exceptional series (cf. [1–3]) also occur for certain representations of specific reductive subgroups. The tensor algebras on these representations are easier to describe (cf. [4,5,7]), and may offer clues to the original situation.
The subgroups which occur form a Magic Triangle, which extends Freudenthal's Magic Square of Lie algebras. We describe these groups from the perspective of dual pairs, and their representations from the action of the dual pair on an exceptional Lie algebra.
Les articles [1–3] exhibent des ressemblances entre les propriétés des représentations adjointes des groupes de la série exceptionnelle. Nous obtenons des ressemblances analogues pour certaines représentations préférées de séries de sous-groupes. L'algèbre tensorielle de ces représentations est plus accessible (cf. [4,5,7]). Ceci pourrait aider à comprendre ce qui se passe.
Les sous-groupes en question forment un « triangle magique » qui prolonge le carré magique d'algèbres de Lie de Freudenthal. Nous décrivons ces sous-groupes en termes de paires duales, et leur représentations préférées en termes de leur action sur l'algèbre de Lie du groupe de la série exceptionnelle ambiant.
Publié le :
Pierre Deligne 1 ; Benedict H. Gross 2
@article{CRMATH_2002__335_11_877_0, author = {Pierre Deligne and Benedict H. Gross}, title = {On the exceptional series, and its descendants}, journal = {Comptes Rendus. Math\'ematique}, pages = {877--881}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02590-6}, language = {en}, }
Pierre Deligne; Benedict H. Gross. On the exceptional series, and its descendants. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 877-881. doi : 10.1016/S1631-073X(02)02590-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02590-6/
[1] Computational evidence for Deligne's conjecture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 427-432
[2] La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 321-326
[3] La série exceptionnelle de groupes de Lie II, C. R. Acad. Sci. Paris, Série I, Volume 323 (1996), pp. 577-582
[4] A distinguished family of unitary representations for the exceptional groups of real rank =4, Lie Theory and Geometry, Birkhäuser, 1994, pp. 289-304
[5] Invariant theory of G2 and Spin7, Comment. Math. Helv., Volume 63 (1988), pp. 624-663
[6] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations, CAN, Amsterdam, 1992
[7] Tensor categories of Lie type EN, Adv. Math. (2002)
- Series of Representations, Lie Theory and Its Applications in Physics, Volume 473 (2025), p. 361 | DOI:10.1007/978-981-97-6453-2_28
- On refined Vogel's universality, Physics Letters B, Volume 867 (2025), p. 139596 | DOI:10.1016/j.physletb.2025.139596
- Modular forms of half-integral weight on exceptional groups, Compositio Mathematica, Volume 160 (2024) no. 3, pp. 657-707 | DOI:10.1112/s0010437x23007686 | Zbl:7810325
- On intermediate exceptional series, Letters in Mathematical Physics, Volume 114 (2024) no. 5, p. 62 (Id/No 113) | DOI:10.1007/s11005-024-01861-5 | Zbl:7930033
- Lie algebra \(\mathfrak{e}_{7\frac{1}{2}}\) and Dynkin index, Communications in Algebra, Volume 51 (2023) no. 9, pp. 3929-3951 | DOI:10.1080/00927872.2023.2193633 | Zbl:1532.17009
- Albert algebras over \(\mathbb{Z}\) and other rings, Forum of Mathematics, Sigma, Volume 11 (2023), p. 39 (Id/No e18) | DOI:10.1017/fms.2023.7 | Zbl:1527.17017
- A class of continuous non-associative algebras arising from algebraic groups including \(E_8\), Forum of Mathematics, Sigma, Volume 9 (2021), p. 22 (Id/No e6) | DOI:10.1017/fms.2020.66 | Zbl:1485.17022
- Minuscule embeddings, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 5, pp. 987-1004 | DOI:10.1016/j.indag.2020.10.005 | Zbl:1542.20216
- Seeking SUSY fixed points in the \(4-\epsilon\) expansion, Journal of High Energy Physics, Volume 2021 (2021) no. 12, p. 31 (Id/No 33) | DOI:10.1007/jhep12(2021)033 | Zbl:1521.81320
- Gradings of Lie algebras, magical spin geometries and matrix factorizations, Representation Theory, Volume 25 (2021), pp. 527-542 | DOI:10.1090/ert/573 | Zbl:1479.17032
- Deligne categories in lattice models and quantum field theory, or making sense of O(N) symmetry with non-integer N, Journal of High Energy Physics, Volume 2020 (2020) no. 4, p. 76 (Id/No 117) | DOI:10.1007/jhep04(2020)117 | Zbl:1436.81099
- Hyperkähler manifolds from the Tits – Freudenthal magic square, European Journal of Mathematics, Volume 5 (2019) no. 4, pp. 1139-1155 | DOI:10.1007/s40879-018-00313-4 | Zbl:1453.14093
- Joseph ideals and lisse minimal \(w\)-algebras, Journal of the Institute of Mathematics of Jussieu, Volume 17 (2018) no. 2, pp. 397-417 | DOI:10.1017/s1474748016000025 | Zbl:1416.17014
- The spin \(L\)-function on \(\mathrm{GSp}_{6}\) for Siegel modular forms, Compositio Mathematica, Volume 153 (2017) no. 7, pp. 1391-1432 | DOI:10.1112/s0010437x17007114 | Zbl:1382.11038
- Refined composite invariants of torus knots via DAHA, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 25 (2016) no. 2-3, pp. 433-471 | DOI:10.5802/afst.1501 | Zbl:1379.57008
- \(E_8\), the most exceptional group, Bulletin of the American Mathematical Society. New Series, Volume 53 (2016) no. 4, pp. 643-671 | DOI:10.1090/bull/1540 | Zbl:1398.20062
- $\boldsymbol{\mathcal{W}}$-algebras with Non-admissible Levels and the Deligne Exceptional Series, International Mathematics Research Notices (2016), p. rnw240 | DOI:10.1093/imrn/rnw240
- Tracks, Lie's, and Exceptional Magic, Frontiers in Number Theory, Physics, and Geometry II (2007), p. 133 | DOI:10.1007/978-3-540-30308-4_3
- Jordan algebras, exceptional groups, and Bhargava composition, Journal of Algebra, Volume 314 (2007) no. 2, pp. 924-977 | DOI:10.1016/j.jalgebra.2007.02.060 | Zbl:1163.17032
- The sextonions and \(E_{7\frac12}\), Advances in Mathematics, Volume 201 (2006) no. 1, pp. 143-179 | DOI:10.1016/j.aim.2005.02.001 | Zbl:1133.17007
- A universal dimension formula for complex simple Lie algebras, Advances in Mathematics, Volume 201 (2006) no. 2, pp. 379-407 | DOI:10.1016/j.aim.2005.02.007 | Zbl:1151.17003
- Series of Lie groups, Michigan Mathematical Journal, Volume 52 (2004) no. 2, pp. 453-479 | DOI:10.1307/mmj/1091112085 | Zbl:1165.17302
- Invariant tensors and diagrams, International Journal of Modern Physics A, Volume 18 (2003), pp. 49-82 | DOI:10.1142/s0217751x03017968 | Zbl:1080.18501
Cité par 23 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier