[Sur une méthode de pénalité/Newton et gradient conjugué pour la résolution de problèmes d'obstacles]
Motivé par la recherche des solutions non négatives d'un système d'équations eiconales, avec conditions aux limites de Dirichlet, on étudie dans cette Note une méthode pour la résolution numérique de problèmes d'inéquations variationnelles paraboliques pour des ensembles convexes du type
Motivated by the search for non-negative solutions of a system of Eikonal equations with Dirichlet boundary conditions, we discuss in this Note a method for the numerical solution of parabolic variational inequality problems for convex sets such as
Accepté le :
Publié le :
Roland Glowinski 1 ; Yuri A. Kuznetsov 1 ; Tsorng-Whay Pan 1
@article{CRMATH_2003__336_5_435_0, author = {Roland Glowinski and Yuri A. Kuznetsov and Tsorng-Whay Pan}, title = {A {penalty/Newton/conjugate} gradient method for the solution of obstacle problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {435--440}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00025-6}, language = {en}, }
TY - JOUR AU - Roland Glowinski AU - Yuri A. Kuznetsov AU - Tsorng-Whay Pan TI - A penalty/Newton/conjugate gradient method for the solution of obstacle problems JO - Comptes Rendus. Mathématique PY - 2003 SP - 435 EP - 440 VL - 336 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(03)00025-6 LA - en ID - CRMATH_2003__336_5_435_0 ER -
%0 Journal Article %A Roland Glowinski %A Yuri A. Kuznetsov %A Tsorng-Whay Pan %T A penalty/Newton/conjugate gradient method for the solution of obstacle problems %J Comptes Rendus. Mathématique %D 2003 %P 435-440 %V 336 %N 5 %I Elsevier %R 10.1016/S1631-073X(03)00025-6 %G en %F CRMATH_2003__336_5_435_0
Roland Glowinski; Yuri A. Kuznetsov; Tsorng-Whay Pan. A penalty/Newton/conjugate gradient method for the solution of obstacle problems. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 435-440. doi : 10.1016/S1631-073X(03)00025-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00025-6/
[1] Vibrations of Euler–Bernoulli beams with pointwise obstacles (R. Gatignol; Soubbaramayer, eds.), Advances in Kinetic Theory and Continuum Mechanics, Springer-Verlag, Berlin, 1991, pp. 261-275
[2] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978
[3] Basic error estimates for elliptic problems (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp. 17-352
[4] Numerical solution of a system of Eikonal equations, C. R. Acad. Sci. Paris, Sér. I, Volume 336 (2003)
[5] On the discretization of some second order in time differential equations. Applications to nonlinear wave problems (A.V. Balakrishnan, ed.), Computational Techniques in Identification and Control of Flexible Flight Structures, Optimization Software Inc., Los Angeles, 1990, pp. 199-246
[6] Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976
[7] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[8] Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981
- A power penalty approach to a mixed quasilinear elliptic complementarity problem, Journal of Global Optimization, Volume 81 (2021) no. 4, p. 901 | DOI:10.1007/s10898-021-01000-7
- Numerical Approximation of Orthogonal Maps, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 6, p. B1341 | DOI:10.1137/19m1243683
- Fully Discrete Finite Element Methods for Two-Dimensional Bingham Flows, Mathematical Problems in Engineering, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/4865849
- A penalty-regularization-operator splitting method for the numerical solution of a scalar Eikonal equation, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 5, p. 659 | DOI:10.1007/s11401-015-0930-8
- On the numerical solution of some Eikonal equations: An elliptic solver approach, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 5, p. 689 | DOI:10.1007/s11401-015-0971-z
- A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, Volume 60 (2014) no. 3, p. 531 | DOI:10.1007/s10898-013-0122-6
- On the Numerical Simulation of Viscoplastic Fluid Flow, Numerical Methods for Non-Newtonian Fluids, Volume 16 (2011), p. 483 | DOI:10.1016/b978-0-444-53047-9.00006-x
- On the numerical simulation of Bingham visco-plastic flow: Old and new results, Journal of Non-Newtonian Fluid Mechanics, Volume 142 (2007) no. 1-3, p. 36 | DOI:10.1016/j.jnnfm.2006.09.002
- On the numerical simulation of friction constrained motions, Nonlinearity, Volume 19 (2006) no. 1, p. 195 | DOI:10.1088/0951-7715/19/1/010
- A two-grids/projection algorithm for obstacle problems, Computers Mathematics with Applications, Volume 50 (2005) no. 1-2, p. 171 | DOI:10.1016/j.camwa.2004.11.016
- Numerical methods for the solution of a system of Eikonal equations with Dirichlet boundary conditions, Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, p. 511 | DOI:10.1016/s1631-073x(03)00024-4
Cité par 11 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier