Comptes Rendus
Probability Theory
Realization of Virasoro unitarizing measures on the set of Jordan curves
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 429-434.

Two univalent functions are equivalent, fg, if they have the same Schwarzian derivative. The equivalence relation ∼ being defined up to an homographic transformation, it gives an isomorphism between the manifold 𝒥 of Jordan curves and the quotient manifold 𝒮 ˜. It permits to obtain vector fields on 𝒮 ˜ and on 𝒥. The action of these vector fields on the Neretin polynomials is explicited. The existence of a unitarizing measure on the quotient manifold 𝒮 ˜ is discussed and for such a measure, orthogonality relations for the Neretin polynomials are obtained. This work is a concrete realization on the complex space C of the abstract quotient Diff (S 1 )/ SL (2,R) considered in Airault et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 621–626.

Deux fonctions univalentes sont équivalentes, fg, si elles ont même dérivée Schwarzienne. La relation d'équivalence ∼ étant définie à une transformation homographique près, on obtient un isomorphisme entre la variété 𝒥 des courbes de Jordan et la variété quotient 𝒮 ˜. Cela permet de déduire des champs de vecteurs sur 𝒮 ˜ et sur 𝒥. On explicite l'action de ces champs de vecteurs sur les polynômes de Neretin. On étudie l'existence de mesures unitarisantes sur le quotient de l'ensemble des fonctions univalentes par cette relation d'équivalence et pour une telle mesure, on établit des relations d'orthogonalité entre les polynômes de Neretin. Ce travail est une réalisation concrète du quotient Diff (S 1 )/ SL (2,R) de Airault et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 621–626 sur l'espace complexe C produit d'une infinité dénombrable de C.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00085-2

Helene Airault 1, 2; Vladimir Bogachev 3

1 INSSET, Université de Picardie, 48, rue Raspail, 02100 Saint-Quentin (Aisne), France
2 Laboratoire CNRS UMR 6140, LAMFA, 33, rue Saint-Leu, 80039 Amiens, France
3 Dept. Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia
@article{CRMATH_2003__336_5_429_0,
     author = {Helene Airault and Vladimir Bogachev},
     title = {Realization of {Virasoro} unitarizing measures on the set of {Jordan} curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {429--434},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00085-2},
     language = {en},
}
TY  - JOUR
AU  - Helene Airault
AU  - Vladimir Bogachev
TI  - Realization of Virasoro unitarizing measures on the set of Jordan curves
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 429
EP  - 434
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00085-2
LA  - en
ID  - CRMATH_2003__336_5_429_0
ER  - 
%0 Journal Article
%A Helene Airault
%A Vladimir Bogachev
%T Realization of Virasoro unitarizing measures on the set of Jordan curves
%J Comptes Rendus. Mathématique
%D 2003
%P 429-434
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00085-2
%G en
%F CRMATH_2003__336_5_429_0
Helene Airault; Vladimir Bogachev. Realization of Virasoro unitarizing measures on the set of Jordan curves. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 429-434. doi : 10.1016/S1631-073X(03)00085-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00085-2/

[1] H. Airault Mesure unitarisante; algèbre de Heisenberg, algèbre de Virasoro, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 787-792

[2] H. Airault; P. Malliavin Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl., Volume 80 (2001) no. 6, pp. 627-667

[3] H. Airault; P. Malliavin; A. Thalmaier Support of Virasoro unitarizing measures, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 621-626

[4] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. (2002)

[5] V. Bogachev Cours à l'Université de Pise. Differentiable measures and the Malliavin calculus (Mai 1995), Scuola Normale Superiore, Pisa, J. Math. Sci., Volume 87 (1997) no. 4, pp. 3577-3731

[6] A.A. Kirillov Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., Volume 77 (1998), pp. 735-746

[7] O. Lehto Univalent Functions and Teichmüller Spaces, Graduate Texts in Math., 109, Springer-Verlag, 1987

[8] Yu.A. Neretin Holomorphic extensions of representations of the group of diffeomorphisms of the circle, Math. USSR-Sb., Volume 67 (1990) no. 1, pp. 75-96

Cited by Sources:

Comments - Policy