Comptes Rendus
Dynamical Systems
Unique normal forms for Hopf-zero vector fields
[Formes normales uniques des champs de vecteurs de type Hopf-zéro]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 345-348.

Nous étudions l'unicité des formes normales de champs de vecteurs de type Hopf-zéro dans R 3 . Des formes normales uniques dans le cas générique sont données par rapport aux changements de coordonnées et pour l'équivalence orbitale.

We consider normal forms of Hopf-zero vector fields in R 3 . Unique normal forms under conjugacy and orbital equivalence for the generic case are given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00043-8

Guoting Chen 1 ; Duo Wang 2 ; Jiazhong Yang 2

1 UFR de mathématiques, Université de Lille 1, 59655 Villeneuve d'Ascq, France
2 LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
@article{CRMATH_2003__336_4_345_0,
     author = {Guoting Chen and Duo Wang and Jiazhong Yang},
     title = {Unique normal forms for {Hopf-zero} vector fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--348},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00043-8},
     language = {en},
}
TY  - JOUR
AU  - Guoting Chen
AU  - Duo Wang
AU  - Jiazhong Yang
TI  - Unique normal forms for Hopf-zero vector fields
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 345
EP  - 348
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00043-8
LA  - en
ID  - CRMATH_2003__336_4_345_0
ER  - 
%0 Journal Article
%A Guoting Chen
%A Duo Wang
%A Jiazhong Yang
%T Unique normal forms for Hopf-zero vector fields
%J Comptes Rendus. Mathématique
%D 2003
%P 345-348
%V 336
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00043-8
%G en
%F CRMATH_2003__336_4_345_0
Guoting Chen; Duo Wang; Jiazhong Yang. Unique normal forms for Hopf-zero vector fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 345-348. doi : 10.1016/S1631-073X(03)00043-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00043-8/

[1] A. Baider Unique normal forms for vector fields and Hamiltonians, J. Differential Equations, Volume 78 (1989), pp. 33-52

[2] G. Chen, D. Wang, J. Yang, Unique orbital normal forms for Hopf-zero vector fields, Preprint, 2002

[3] F. Ichikawa On finite determinacy of formal vector fields, Invent. Math., Volume 70 (1982), pp. 45-52

[4] H. Kokubu; H. Oka; D. Wang Linear grading function and further reduction of normal forms, J. Differential Equations, Volume 132 (1996), pp. 293-318

[5] J. Lamb, M.A. Teixeira, J. Yang, On the Hamiltonian structure of normal forms for elliptic equilibria of reversible vector fields in R 4 , Preprint, 2002

[6] P. Yu; Y. Yuan The simplest normal form for the singularity of a pure imaginary and a zero eigenvalue, Dyn. Cont. Disc. Impul. Syst. Ser. B, Appl. and Algorithms, Volume 8 (2001), pp. 219-249

Cité par Sources :

Commentaires - Politique