We consider normal forms of Hopf-zero vector fields in . Unique normal forms under conjugacy and orbital equivalence for the generic case are given.
Nous étudions l'unicité des formes normales de champs de vecteurs de type Hopf-zéro dans . Des formes normales uniques dans le cas générique sont données par rapport aux changements de coordonnées et pour l'équivalence orbitale.
Accepted:
Published online:
Guoting Chen 1; Duo Wang 2; Jiazhong Yang 2
@article{CRMATH_2003__336_4_345_0, author = {Guoting Chen and Duo Wang and Jiazhong Yang}, title = {Unique normal forms for {Hopf-zero} vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--348}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00043-8}, language = {en}, }
Guoting Chen; Duo Wang; Jiazhong Yang. Unique normal forms for Hopf-zero vector fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 345-348. doi : 10.1016/S1631-073X(03)00043-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00043-8/
[1] Unique normal forms for vector fields and Hamiltonians, J. Differential Equations, Volume 78 (1989), pp. 33-52
[2] G. Chen, D. Wang, J. Yang, Unique orbital normal forms for Hopf-zero vector fields, Preprint, 2002
[3] On finite determinacy of formal vector fields, Invent. Math., Volume 70 (1982), pp. 45-52
[4] Linear grading function and further reduction of normal forms, J. Differential Equations, Volume 132 (1996), pp. 293-318
[5] J. Lamb, M.A. Teixeira, J. Yang, On the Hamiltonian structure of normal forms for elliptic equilibria of reversible vector fields in , Preprint, 2002
[6] The simplest normal form for the singularity of a pure imaginary and a zero eigenvalue, Dyn. Cont. Disc. Impul. Syst. Ser. B, Appl. and Algorithms, Volume 8 (2001), pp. 219-249
Cited by Sources:
Comments - Policy