Comptes Rendus
Mathematical Problems in Mechanics
Existence of strong solutions for the problem of a rigid-fluid system
[Existence de solutions fortes pour le problème d'un système fluide–solide rigide]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 453-458.

Cette Note est consacrée à l'étude d'un problème d'interaction fluide–solide rigide. Le mouvement du fluide est modélisé par les équations de Navier–Stokes écrites dans un domaine qui dépend du déplacement du solide rigide. Notre résultat principal donne l'existence et l'unicité de solutions fortes, ces dernières étant globales tant que le corps rigide ne touche pas le bord.

This Note is devoted to the study of a fluid–rigid body interaction problem. The motion of the fluid is modelled by the Navier–Stokes equations, written in an unknown bounded domain depending on the displacement of the rigid body. Our main result yields the existence and uniqueness of strong solutions, which are global provided that the rigid body does not touch the boundary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00081-5

Takéo Takahashi 1, 2

1 Institut Elie Cartan, faculté des sciences, BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
2 INRIA Lorraine, projet CORIDA, France
@article{CRMATH_2003__336_5_453_0,
     author = {Tak\'eo Takahashi},
     title = {Existence of strong solutions for the problem of a rigid-fluid system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {453--458},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00081-5},
     language = {en},
}
TY  - JOUR
AU  - Takéo Takahashi
TI  - Existence of strong solutions for the problem of a rigid-fluid system
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 453
EP  - 458
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00081-5
LA  - en
ID  - CRMATH_2003__336_5_453_0
ER  - 
%0 Journal Article
%A Takéo Takahashi
%T Existence of strong solutions for the problem of a rigid-fluid system
%J Comptes Rendus. Mathématique
%D 2003
%P 453-458
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00081-5
%G en
%F CRMATH_2003__336_5_453_0
Takéo Takahashi. Existence of strong solutions for the problem of a rigid-fluid system. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 453-458. doi : 10.1016/S1631-073X(03)00081-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00081-5/

[1] C. Conca; J.H. San Martı́n; M. Tucsnak Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, Volume 25 (2000) no. 5–6, pp. 1019-1042

[2] B. Desjardins; M.J. Esteban Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., Volume 146 (1999) no. 1, pp. 59-71

[3] B. Desjardins; M.J. Esteban On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, Volume 25 (2000) no. 7–8, pp. 1399-1413

[4] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Preprint

[5] G.P. Galdi On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal., Volume 148 (1999) no. 1, pp. 53-88

[6] C. Grandmont; Y. Maday Existence for an unsteady fluid–structure interaction problem, Math. Modeling Numer. Anal., Volume 34 (2000) no. 3, pp. 609-636

[7] M.D. Gunzburger; H.-C. Lee; G.A. Seregin Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., Volume 2 (2000) no. 3, pp. 219-266

[8] K.-H. Hoffmann; V.N. Starovoitov On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., Volume 9 (1999) no. 2, pp. 633-648

[9] K.-H. Hoffmann; V.N. Starovoitov Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math., Volume 5 (2000), pp. 15-21 (electronic)

[10] A. Inoue; M. Wakimoto On existence of solutions of the Navier–Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 24 (1977) no. 2, pp. 303-319

[11] N.V. Judakov The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy (Vyp.18, Dinamika Zidkost. so Svobod. Granicami) (1974), pp. 249-253 (255)

[12] P.-L. Lions Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, Oxford University Press, New York, 1996 (Incompressible Models, Oxford Science Publications)

[13] J.H. San Martı́n; V. Starovoitov; M. Tucsnak Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147

[14] D. Serre Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., Volume 4 (1987) no. 1, pp. 99-110

[15] T. Takahashi, Existence of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain, Preprint

[16] T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., to appear

[17] J.L. Vázquez, E. Zuazua, Large time behavior for a simplified 1d model of fluid–solid interaction, Preprint

Cité par Sources :

Commentaires - Politique