[Curvelets et Opérateurs Intégraux de Fourier]
Une série de récents articles ont introduit l'analyse en curvelets E. Candès, D. Donoho, in : (i) Curvelets – a surprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105–120 ; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 : les curvelets offrent une représentation multi-échelle qui ouvre de nouvelles perspectives pour l'analyse de problèmes importants en théorie de l'approximation et en traitement de l'image. Cet article montre que les curvelets permettent une représentation optimale de la classe des opérateurs intégraux de Fourier. Par « optimale », nous entendons par exemple, la plus économe.
A recent body of work introduced new tight-frames of curvelets E. Candès, D. Donoho, in: (i) Curvelets – a suprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105–120; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 to address key problems in approximation theory and image processing. This paper shows that curvelets essentially provide optimally sparse representations of Fourier Integral Operators.
Accepté le :
Publié le :
Emmanuel Candès 1 ; Laurent Demanet 1
@article{CRMATH_2003__336_5_395_0, author = {Emmanuel Cand\`es and Laurent Demanet}, title = {Curvelets and {Fourier} {Integral} {Operators}}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--398}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00095-5}, language = {en}, }
Emmanuel Candès; Laurent Demanet. Curvelets and Fourier Integral Operators. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 395-398. doi : 10.1016/S1631-073X(03)00095-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00095-5/
[1] Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., Volume 44 (1991), pp. 141-183
[2] E. Candès, L. Demanet, Curvelets, warpings and optimally sparse representations of Fourier Integral Operators, Manuscript, 2002
[3] Curvelets – a suprisingly effective nonadaptive representation for objects with edges (A. Cohen; C. Rabut; L. Schumaker, eds.), Curves and Surface Fitting: Saint-Malo 1999, Vanderbilt University Press, Nashville, 2000, pp. 105-120
[4] E. Candès, D. Donoho, New tight Frames of curvelets and optimal representations of objects with C2 singularities, submitted, http://www.acm.caltech.edu/~emmanuel/publications.html, 2002
[5] New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Processing, Volume 82 (2002), pp. 1519-1543
[6] A note on spherical summation multipliers, Israel J. Math., Volume 15 (1973), pp. 44-52
[7] A Hardy space for Fourier integral operators, J. Geom. Anal., Volume 7 (1997)
[8] A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835
- Denoising of Dense Spatial Array Data Using the Curvelet Transform, Bulletin of the Seismological Society of America, Volume 114 (2024) no. 5, p. 2325 | DOI:10.1785/0120240030
- Diffraction Imaging Method Using Curvelet-Domain Cascade Filter, Pure and Applied Geophysics, Volume 181 (2024) no. 4, p. 1241 | DOI:10.1007/s00024-024-03456-6
- Data representation: from multiscale transforms to neural networks, Signal Processing and Machine Learning Theory (2024), p. 537 | DOI:10.1016/b978-0-32-391772-8.00015-6
- Lp and ℋFIOp regularity for wave equations with rough coefficients, Pure and Applied Analysis, Volume 5 (2023) no. 3, p. 541 | DOI:10.2140/paa.2023.5.541
- Introduction, Time Dependent Phase Space Filters (2023), p. 1 | DOI:10.1007/978-981-19-6818-1_1
- Fast wavelet decomposition of linear operators through product-convolution expansions, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 1, p. 569 | DOI:10.1093/imanum/draa072
- Image reconstruction algorithms in radio interferometry: From handcrafted to learned regularization denoisers, Monthly Notices of the Royal Astronomical Society, Volume 518 (2022) no. 1, p. 604 | DOI:10.1093/mnras/stac2672
- Sparse representation of tropospheric grid data using compressed sensing, GPS Solutions, Volume 25 (2021) no. 3 | DOI:10.1007/s10291-021-01120-3
- Retinal image enhancement using adaptive histogram equalization tuned with nonsimilar grouping curvelet, International Journal of Imaging Systems and Technology, Volume 31 (2021) no. 2, p. 1050 | DOI:10.1002/ima.22504
- RETRACTED ARTICLE: Data measurement and aerobics online teaching based on SAR target detection network, Personal and Ubiquitous Computing, Volume 25 (2021) no. S1, p. 45 | DOI:10.1007/s00779-021-01641-1
- Separating the scattered wavefield from teleseismic P using curvelets on the long beach array data set, Geophysical Journal International, Volume 220 (2020) no. 2, p. 1112 | DOI:10.1093/gji/ggz487
- Review on image-stitching techniques, Multimedia Systems, Volume 26 (2020) no. 4, p. 413 | DOI:10.1007/s00530-020-00651-y
- Off-singularity bounds and Hardy spaces for Fourier integral operators, Transactions of the American Mathematical Society, Volume 373 (2020) no. 8, p. 5773 | DOI:10.1090/tran/8090
- Advanced Digital Signal Processing of Seismic Data, 2019 | DOI:10.1017/9781139626286
- Cardiac events detection using curvelet transform, Sādhanā, Volume 44 (2019) no. 2 | DOI:10.1007/s12046-018-1046-0
- , IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (2018), p. 4804 | DOI:10.1109/igarss.2018.8519423
- New Multiscale Constructions, Multiscale Transforms with Application to Image Processing (2018), p. 93 | DOI:10.1007/978-981-10-7272-7_4
- , 2017 International Conference on Sampling Theory and Applications (SampTA) (2017), p. 256 | DOI:10.1109/sampta.2017.8024449
- Multichannel sparse deconvolution of seismic data with shearlet–Cauchy constrained inversion, Journal of Geophysics and Engineering, Volume 14 (2017) no. 5, p. 1275 | DOI:10.1088/1742-2140/aa7792
- A versatile tuneable curvelet-like directional filter with application to fracture detection in two-dimensional GPR data, Signal Processing, Volume 132 (2017), p. 243 | DOI:10.1016/j.sigpro.2016.07.009
- , Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, Volume 9823 (2016), p. 98230H | DOI:10.1117/12.2223291
- Efficient representation and accurate evaluation of oscillatory integrals and functions, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 8, p. 4077 | DOI:10.3934/dcds.2016.36.4077
- Computing Fourier integral operators with caustics, Inverse Problems, Volume 32 (2016) no. 12, p. 125001 | DOI:10.1088/0266-5611/32/12/125001
- A Comparative Evaluation of Denoising of Remotely Sensed Images Using Wavelet, Curvelet and Contourlet Transforms, Journal of the Indian Society of Remote Sensing, Volume 44 (2016) no. 6, p. 843 | DOI:10.1007/s12524-016-0552-y
- Curvelets, Encyclopedia of Applied and Computational Mathematics (2015), p. 320 | DOI:10.1007/978-3-540-70529-1_371
- Wave Phenomena, Handbook of Mathematical Methods in Imaging (2015), p. 1205 | DOI:10.1007/978-1-4939-0790-8_52
- Sparse Wavelet Representations of Spatially Varying Blurring Operators, SIAM Journal on Imaging Sciences, Volume 8 (2015) no. 4, p. 2976 | DOI:10.1137/151003465
- Discrete Multi-Scale Transforms in Signal Processing, Academic Press Library in Signal Processing: Volume 1 - Signal Processing Theory and Machine Learning, Volume 1 (2014), p. 467 | DOI:10.1016/b978-0-12-396502-8.00009-7
- Multidimensional Wavelets and Generalizations, Coherent States, Wavelets, and Their Generalizations (2014), p. 411 | DOI:10.1007/978-1-4614-8535-3_14
- , 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA) (2013), p. 1 | DOI:10.1109/iccspa.2013.6487226
- Multiscale Discrete Approximations of Fourier Integral Operators Associated with Canonical Transformations and Caustics, Multiscale Modeling Simulation, Volume 11 (2013) no. 2, p. 566 | DOI:10.1137/120889642
- Vascular Tree Segmentation in Fundus Images Using Curvelet Transform, Proceedings of International Conference on Advances in Computing, Volume 174 (2013), p. 859 | DOI:10.1007/978-81-322-0740-5_102
- , 2012 IEEE International Geoscience and Remote Sensing Symposium (2012), p. 2148 | DOI:10.1109/igarss.2012.6351078
- Time-Frequency Analysis of Schrödinger Propagators, Evolution Equations of Hyperbolic and Schrödinger Type (2012), p. 63 | DOI:10.1007/978-3-0348-0454-7_4
- Palm vein image enhancement based on mirror extended curvelet transform, JOURNAL OF INFRARED AND MILLIMETER WAVES, Volume 31 (2012) no. 1, p. 57 | DOI:10.3724/sp.j.1010.2012.00057
- Compactly Supported Curvelet-Type Systems, Journal of Function Spaces and Applications, Volume 2012 (2012), p. 1 | DOI:10.1155/2012/876315
- Multiscale Discrete Approximation of Fourier Integral Operators, Multiscale Modeling Simulation, Volume 10 (2012) no. 1, p. 111 | DOI:10.1137/100808174
- Schatten class Fourier integral operators, Applied and Computational Harmonic Analysis, Volume 31 (2011) no. 2, p. 205 | DOI:10.1016/j.acha.2010.11.001
- Wave Phenomena, Handbook of Mathematical Methods in Imaging (2011), p. 867 | DOI:10.1007/978-0-387-92920-0_20
- An iterative curvelet thresholding algorithm for seismic random noise attenuation, Applied Geophysics, Volume 7 (2010) no. 4, p. 315 | DOI:10.1007/s11770-010-0259-8
- The Curvelet Transform, IEEE Signal Processing Magazine, Volume 27 (2010) no. 2, p. 118 | DOI:10.1109/msp.2009.935453
- Local Sobolev estimates of a function by means of its Radon transform, Inverse Problems Imaging, Volume 4 (2010) no. 4, p. 721 | DOI:10.3934/ipi.2010.4.721
- Sparsity of Gabor representation of Schrödinger propagators, Applied and Computational Harmonic Analysis, Volume 26 (2009) no. 3, p. 357 | DOI:10.1016/j.acha.2008.08.003
- Curvelets and Ridgelets, Encyclopedia of Complexity and Systems Science (2009), p. 1718 | DOI:10.1007/978-0-387-30440-3_111
- A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators, Multiscale Modeling Simulation, Volume 7 (2009) no. 4, p. 1727 | DOI:10.1137/080734339
- Wave atoms and time upscaling of wave equations, Numerische Mathematik, Volume 113 (2009) no. 1, p. 1 | DOI:10.1007/s00211-009-0226-6
- Wave atoms and sparsity of oscillatory patterns, Applied and Computational Harmonic Analysis, Volume 23 (2007) no. 3, p. 368 | DOI:10.1016/j.acha.2007.03.003
- Local algorithms in exterior tomography, Journal of Computational and Applied Mathematics, Volume 199 (2007) no. 1, p. 141 | DOI:10.1016/j.cam.2004.11.055
- , SEG Technical Program Expanded Abstracts 2007 (2007), p. 2225 | DOI:10.1190/1.2792928
- Fast Computation of Fourier Integral Operators, SIAM Journal on Scientific Computing, Volume 29 (2007) no. 6, p. 2464 | DOI:10.1137/060671139
- Seismic denoising with nonuniformly sampled curvelets, Computing in Science Engineering, Volume 8 (2006) no. 3, p. 16 | DOI:10.1109/mcse.2006.49
- , 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005), p. 5295 | DOI:10.1109/iembs.2005.1615675
- Continuous curvelet transform, Applied and Computational Harmonic Analysis, Volume 19 (2005) no. 2, p. 198 | DOI:10.1016/j.acha.2005.02.004
- The curvelet representation of wave propagators is optimally sparse, Communications on Pure and Applied Mathematics, Volume 58 (2005) no. 11, p. 1472 | DOI:10.1002/cpa.20078
- New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 2, p. 219 | DOI:10.1002/cpa.10116
- , SEG Technical Program Expanded Abstracts 2004 (2004), p. 1977 | DOI:10.1190/1.1851181
- , SEG Technical Program Expanded Abstracts 2004 (2004), p. 2204 | DOI:10.1190/1.1845213
- , SEG Technical Program Expanded Abstracts 2004 (2004), p. 961 | DOI:10.1190/1.1845326
Cité par 58 documents. Sources : Crossref
Commentaires - Politique