Comptes Rendus
Mathematical Analysis
Curvelets and Fourier Integral Operators
[Curvelets et Opérateurs Intégraux de Fourier]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 395-398.

Une série de récents articles ont introduit l'analyse en curvelets E. Candès, D. Donoho, in : (i) Curvelets – a surprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105–120 ; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 : les curvelets offrent une représentation multi-échelle qui ouvre de nouvelles perspectives pour l'analyse de problèmes importants en théorie de l'approximation et en traitement de l'image. Cet article montre que les curvelets permettent une représentation optimale de la classe des opérateurs intégraux de Fourier. Par « optimale », nous entendons par exemple, la plus économe.

A recent body of work introduced new tight-frames of curvelets E. Candès, D. Donoho, in: (i) Curvelets – a suprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105–120; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 to address key problems in approximation theory and image processing. This paper shows that curvelets essentially provide optimally sparse representations of Fourier Integral Operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00095-5

Emmanuel Candès 1 ; Laurent Demanet 1

1 Applied and Computational Mathematics, California Institute of Technology, Mail Code 217-50, Pasadena, CA 91125, USA
@article{CRMATH_2003__336_5_395_0,
     author = {Emmanuel Cand\`es and Laurent Demanet},
     title = {Curvelets and {Fourier} {Integral} {Operators}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {395--398},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00095-5},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel Candès
AU  - Laurent Demanet
TI  - Curvelets and Fourier Integral Operators
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 395
EP  - 398
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00095-5
LA  - en
ID  - CRMATH_2003__336_5_395_0
ER  - 
%0 Journal Article
%A Emmanuel Candès
%A Laurent Demanet
%T Curvelets and Fourier Integral Operators
%J Comptes Rendus. Mathématique
%D 2003
%P 395-398
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00095-5
%G en
%F CRMATH_2003__336_5_395_0
Emmanuel Candès; Laurent Demanet. Curvelets and Fourier Integral Operators. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 395-398. doi : 10.1016/S1631-073X(03)00095-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00095-5/

[1] G. Beylkin; R. Coifman; V. Rokhlin Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., Volume 44 (1991), pp. 141-183

[2] E. Candès, L. Demanet, Curvelets, warpings and optimally sparse representations of Fourier Integral Operators, Manuscript, 2002

[3] E. Candès; D. Donoho Curvelets – a suprisingly effective nonadaptive representation for objects with edges (A. Cohen; C. Rabut; L. Schumaker, eds.), Curves and Surface Fitting: Saint-Malo 1999, Vanderbilt University Press, Nashville, 2000, pp. 105-120

[4] E. Candès, D. Donoho, New tight Frames of curvelets and optimal representations of objects with C2 singularities, submitted, http://www.acm.caltech.edu/~emmanuel/publications.html, 2002

[5] E. Candès; F. Guo New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Processing, Volume 82 (2002), pp. 1519-1543

[6] C. Fefferman A note on spherical summation multipliers, Israel J. Math., Volume 15 (1973), pp. 44-52

[7] H. Smith A Hardy space for Fourier integral operators, J. Geom. Anal., Volume 7 (1997)

[8] H. Smith A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835

  • Jia Zhang; Charles A. Langston; Hongfeng Yang Denoising of Dense Spatial Array Data Using the Curvelet Transform, Bulletin of the Seismological Society of America, Volume 114 (2024) no. 5, p. 2325 | DOI:10.1785/0120240030
  • Zongnan Chen; Jingtao Zhao; Suping Peng Diffraction Imaging Method Using Curvelet-Domain Cascade Filter, Pure and Applied Geophysics, Volume 181 (2024) no. 4, p. 1241 | DOI:10.1007/s00024-024-03456-6
  • Yufang Bao; Hamid Krim Data representation: from multiscale transforms to neural networks, Signal Processing and Machine Learning Theory (2024), p. 537 | DOI:10.1016/b978-0-32-391772-8.00015-6
  • Andrew Hassell; Jan Rozendaal Lp and ℋFIOp regularity for wave equations with rough coefficients, Pure and Applied Analysis, Volume 5 (2023) no. 3, p. 541 | DOI:10.2140/paa.2023.5.541
  • Avy Soffer; Chris Stucchio; Minh-Binh Tran Introduction, Time Dependent Phase Space Filters (2023), p. 1 | DOI:10.1007/978-981-19-6818-1_1
  • Paul Escande; Pierre Weiss Fast wavelet decomposition of linear operators through product-convolution expansions, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 1, p. 569 | DOI:10.1093/imanum/draa072
  • Matthieu Terris; Arwa Dabbech; Chao Tang; Yves Wiaux Image reconstruction algorithms in radio interferometry: From handcrafted to learned regularization denoisers, Monthly Notices of the Royal Astronomical Society, Volume 518 (2022) no. 1, p. 604 | DOI:10.1093/mnras/stac2672
  • Gongwei Xiao; Genyou Liu; Jikun Ou; Guolin Liu; Shengliang Wang; Jiachen Wang; Ming Gao Sparse representation of tropospheric grid data using compressed sensing, GPS Solutions, Volume 25 (2021) no. 3 | DOI:10.1007/s10291-021-01120-3
  • A Anilet Bala; P Aruna Priya; Vivek Maik Retinal image enhancement using adaptive histogram equalization tuned with nonsimilar grouping curvelet, International Journal of Imaging Systems and Technology, Volume 31 (2021) no. 2, p. 1050 | DOI:10.1002/ima.22504
  • Xianfang Zhang RETRACTED ARTICLE: Data measurement and aerobics online teaching based on SAR target detection network, Personal and Ubiquitous Computing, Volume 25 (2021) no. S1, p. 45 | DOI:10.1007/s00779-021-01641-1
  • Jia Zhang; Charles A Langston Separating the scattered wavefield from teleseismic P using curvelets on the long beach array data set, Geophysical Journal International, Volume 220 (2020) no. 2, p. 1112 | DOI:10.1093/gji/ggz487
  • Zhaobin Wang; Zekun Yang Review on image-stitching techniques, Multimedia Systems, Volume 26 (2020) no. 4, p. 413 | DOI:10.1007/s00530-020-00651-y
  • Andrew Hassell; Pierre Portal; Jan Rozendaal Off-singularity bounds and Hardy spaces for Fourier integral operators, Transactions of the American Mathematical Society, Volume 373 (2020) no. 8, p. 5773 | DOI:10.1090/tran/8090
  • Wail A. Mousa Advanced Digital Signal Processing of Seismic Data, 2019 | DOI:10.1017/9781139626286
  • ALKA BARHATTE; MANISHA DALE; RAJESH GHONGADE Cardiac events detection using curvelet transform, Sādhanā, Volume 44 (2019) no. 2 | DOI:10.1007/s12046-018-1046-0
  • Rizwan Ahmed Ansari; Krishna Mohan Buddhiraju; Avik Bhattacharya, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (2018), p. 4804 | DOI:10.1109/igarss.2018.8519423
  • Aparna Vyas; Soohwan Yu; Joonki Paik New Multiscale Constructions, Multiscale Transforms with Application to Image Processing (2018), p. 93 | DOI:10.1007/978-981-10-7272-7_4
  • Anders Hansen; Laura Terhaar, 2017 International Conference on Sampling Theory and Applications (SampTA) (2017), p. 256 | DOI:10.1109/sampta.2017.8024449
  • Chengming Liu; Deli Wang; Tong Wang; Fei Feng; Yonggang Wang Multichannel sparse deconvolution of seismic data with shearlet–Cauchy constrained inversion, Journal of Geophysics and Engineering, Volume 14 (2017) no. 5, p. 1275 | DOI:10.1088/1742-2140/aa7792
  • Andreas Tzanis A versatile tuneable curvelet-like directional filter with application to fracture detection in two-dimensional GPR data, Signal Processing, Volume 132 (2017), p. 243 | DOI:10.1016/j.sigpro.2016.07.009
  • Steven S. Bishop; Jason C. Isaacs; Julie L. White; Derek T. Anderson; John E. Ball; Brian Parker, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, Volume 9823 (2016), p. 98230H | DOI:10.1117/12.2223291
  • Lucas Monzón; Gregory Beylkin Efficient representation and accurate evaluation of oscillatory integrals and functions, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 8, p. 4077 | DOI:10.3934/dcds.2016.36.4077
  • Peter Caday Computing Fourier integral operators with caustics, Inverse Problems, Volume 32 (2016) no. 12, p. 125001 | DOI:10.1088/0266-5611/32/12/125001
  • Rizwan Ahmed Ansari; Kirshna Mohan Budhhiraju A Comparative Evaluation of Denoising of Remotely Sensed Images Using Wavelet, Curvelet and Contourlet Transforms, Journal of the Indian Society of Remote Sensing, Volume 44 (2016) no. 6, p. 843 | DOI:10.1007/s12524-016-0552-y
  • Gerlind Plonka; Jianwei Ma Curvelets, Encyclopedia of Applied and Computational Mathematics (2015), p. 320 | DOI:10.1007/978-3-540-70529-1_371
  • Matti Lassas; Mikko Salo; Gunther Uhlmann Wave Phenomena, Handbook of Mathematical Methods in Imaging (2015), p. 1205 | DOI:10.1007/978-1-4939-0790-8_52
  • Paul Escande; Pierre Weiss Sparse Wavelet Representations of Spatially Varying Blurring Operators, SIAM Journal on Imaging Sciences, Volume 8 (2015) no. 4, p. 2976 | DOI:10.1137/151003465
  • Yufang Bao; Hamid Krim Discrete Multi-Scale Transforms in Signal Processing, Academic Press Library in Signal Processing: Volume 1 - Signal Processing Theory and Machine Learning, Volume 1 (2014), p. 467 | DOI:10.1016/b978-0-12-396502-8.00009-7
  • Syed Twareque Ali; Jean-Pierre Antoine; Jean-Pierre Gazeau Multidimensional Wavelets and Generalizations, Coherent States, Wavelets, and Their Generalizations (2014), p. 411 | DOI:10.1007/978-1-4614-8535-3_14
  • S. Elaiwat; F. Boussaid; M. Bennamoun; A. El-Sallam, 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA) (2013), p. 1 | DOI:10.1109/iccspa.2013.6487226
  • Maarten V. de Hoop; Gunther Uhlmann; András Vasy; Herwig Wendt Multiscale Discrete Approximations of Fourier Integral Operators Associated with Canonical Transformations and Caustics, Multiscale Modeling Simulation, Volume 11 (2013) no. 2, p. 566 | DOI:10.1137/120889642
  • Rupu Kumari; Charul Bhatnagar; Anand Singh Jalal Vascular Tree Segmentation in Fundus Images Using Curvelet Transform, Proceedings of International Conference on Advances in Computing, Volume 174 (2013), p. 859 | DOI:10.1007/978-81-322-0740-5_102
  • M. Alioghli Fazel; S. Homayouni; V. Akbari; M. Mahdian Pari, 2012 IEEE International Geoscience and Remote Sensing Symposium (2012), p. 2148 | DOI:10.1109/igarss.2012.6351078
  • Elena Cordero; Fabio Nicola; Luigi Rodino Time-Frequency Analysis of Schrödinger Propagators, Evolution Equations of Hyperbolic and Schrödinger Type (2012), p. 63 | DOI:10.1007/978-3-0348-0454-7_4
  • Min JIANG; Shi-Jian LIU; Dan LI; Fan-Ming LI; Jun WANG Palm vein image enhancement based on mirror extended curvelet transform, JOURNAL OF INFRARED AND MILLIMETER WAVES, Volume 31 (2012) no. 1, p. 57 | DOI:10.3724/sp.j.1010.2012.00057
  • Kenneth N. Rasmussen; Morten Nielsen Compactly Supported Curvelet-Type Systems, Journal of Function Spaces and Applications, Volume 2012 (2012), p. 1 | DOI:10.1155/2012/876315
  • Fredrik Andersson; Maarten V. de Hoop; Herwig Wendt Multiscale Discrete Approximation of Fourier Integral Operators, Multiscale Modeling Simulation, Volume 10 (2012) no. 1, p. 111 | DOI:10.1137/100808174
  • Shannon Bishop Schatten class Fourier integral operators, Applied and Computational Harmonic Analysis, Volume 31 (2011) no. 2, p. 205 | DOI:10.1016/j.acha.2010.11.001
  • Matti Lassas; Mikko Salo; Gunther Uhlmann Wave Phenomena, Handbook of Mathematical Methods in Imaging (2011), p. 867 | DOI:10.1007/978-0-387-92920-0_20
  • De-Li Wang; Zhong-Fei Tong; Chen Tang; Heng Zhu An iterative curvelet thresholding algorithm for seismic random noise attenuation, Applied Geophysics, Volume 7 (2010) no. 4, p. 315 | DOI:10.1007/s11770-010-0259-8
  • Jianwei Ma; Gerlind Plonka The Curvelet Transform, IEEE Signal Processing Magazine, Volume 27 (2010) no. 2, p. 118 | DOI:10.1109/msp.2009.935453
  • Hans Rullgård; Eric Todd Quinto Local Sobolev estimates of a function by means of its Radon transform, Inverse Problems Imaging, Volume 4 (2010) no. 4, p. 721 | DOI:10.3934/ipi.2010.4.721
  • Elena Cordero; Fabio Nicola; Luigi Rodino Sparsity of Gabor representation of Schrödinger propagators, Applied and Computational Harmonic Analysis, Volume 26 (2009) no. 3, p. 357 | DOI:10.1016/j.acha.2008.08.003
  • Jalal Fadili; Jean-Luc Starck Curvelets and Ridgelets, Encyclopedia of Complexity and Systems Science (2009), p. 1718 | DOI:10.1007/978-0-387-30440-3_111
  • Emmanuel Candès; Laurent Demanet; Lexing Ying A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators, Multiscale Modeling Simulation, Volume 7 (2009) no. 4, p. 1727 | DOI:10.1137/080734339
  • Laurent Demanet; Lexing Ying Wave atoms and time upscaling of wave equations, Numerische Mathematik, Volume 113 (2009) no. 1, p. 1 | DOI:10.1007/s00211-009-0226-6
  • Laurent Demanet; Lexing Ying Wave atoms and sparsity of oscillatory patterns, Applied and Computational Harmonic Analysis, Volume 23 (2007) no. 3, p. 368 | DOI:10.1016/j.acha.2007.03.003
  • Eric Todd Quinto Local algorithms in exterior tomography, Journal of Computational and Applied Mathematics, Volume 199 (2007) no. 1, p. 141 | DOI:10.1016/j.cam.2004.11.055
  • Peyman P. Moghaddam; Felix Herrmann; Chris Stolk, SEG Technical Program Expanded Abstracts 2007 (2007), p. 2225 | DOI:10.1190/1.2792928
  • Emmanuel Candès; Laurent Demanet; Lexing Ying Fast Computation of Fourier Integral Operators, SIAM Journal on Scientific Computing, Volume 29 (2007) no. 6, p. 2464 | DOI:10.1137/060671139
  • G. Hennenfent; F.J. Herrmann Seismic denoising with nonuniformly sampled curvelets, Computing in Science Engineering, Volume 8 (2006) no. 3, p. 16 | DOI:10.1109/mcse.2006.49
  • Yinsheng Lei; Mingshi Wang; Tongjing Sun; Guiyou Chen; Yi Liu; Zhongguo Liu, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005), p. 5295 | DOI:10.1109/iembs.2005.1615675
  • Emmanuel J. Candès; David L. Donoho Continuous curvelet transform, Applied and Computational Harmonic Analysis, Volume 19 (2005) no. 2, p. 198 | DOI:10.1016/j.acha.2005.02.004
  • Emmanuel J. Candès; Laurent Demanet The curvelet representation of wave propagators is optimally sparse, Communications on Pure and Applied Mathematics, Volume 58 (2005) no. 11, p. 1472 | DOI:10.1002/cpa.20078
  • Emmanuel J. Candès; David L. Donoho New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 2, p. 219 | DOI:10.1002/cpa.10116
  • Felix Herrmann; Peyman Moghaddam, SEG Technical Program Expanded Abstracts 2004 (2004), p. 1977 | DOI:10.1190/1.1851181
  • Peyman P. Moghaddam; Felix J. Herrmann, SEG Technical Program Expanded Abstracts 2004 (2004), p. 2204 | DOI:10.1190/1.1845213
  • Huub Douma; Maarten V. de Hoop, SEG Technical Program Expanded Abstracts 2004 (2004), p. 961 | DOI:10.1190/1.1845326

Cité par 58 documents. Sources : Crossref

Commentaires - Politique