Étant donné un revêtement ramifié à quatre feuillets simples , nous donnons une méthode effective pour trouver une description chirurgicale de M.
Given a simple 4-fold branched covering , we provide an effective method to find a surgery presentation of M.
Accepté le :
Publié le :
Franck Harou 1
@article{CRMATH_2003__336_7_597_0,
author = {Franck Harou},
title = {Description chirurgicale des rev\^etements ramifi\'es simples \`a quatre feuillets de la 3-sph\`ere},
journal = {Comptes Rendus. Math\'ematique},
pages = {597--600},
year = {2003},
publisher = {Elsevier},
volume = {336},
number = {7},
doi = {10.1016/S1631-073X(03)00135-3},
language = {fr},
}
Franck Harou. Description chirurgicale des revêtements ramifiés simples à quatre feuillets de la 3-sphère. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 597-600. doi: 10.1016/S1631-073X(03)00135-3
[1] Description chirurgicale des revêtements triples simples de S3 ramifiés le long d'un entrelacs, Ann. Inst. Fourier, Volume 51 (2001) no. 5, pp. 1229-1242
[2] F. Harou, A Geometrical method to find surgery presentation of 3-fold simple branched coverings of the 3-sphere, Prépublication CIRGET, 2002
[3] A representation of closed orientable 3-manifolds as 3-fold branched coverings of S3, Bull. Amer. Math. Soc., Volume 80 (1974), pp. 845-846
[4] Three-manifolds as 3-fold branched covers of S3, Quart. J. Math. Oxford, Volume 27 (1976) no. 2, pp. 85-90
[5] Four-manifolds as 4-fold branched covers of S4, Topology, Volume 34 (1995), pp. 497-508
Cité par Sources :
Commentaires - Politique
