[Une méthode de lagrangien augmenté pour la résolution numérique du problème de Monge–Ampère elliptique en dimension deux avec conditions de Dirichlet]
L'objet essentiel de cette Note est l'étude d'une méthode pour la résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique en dimension deux (le problème E-MAD). Cette méthode repose sur une reformulation de E-MAD comme un problème de Calcul des Variations impliquant l'opérateur bi-harmonique (ou des opérateurs voisins), puis sur une formulation de type point-selle pour un Lagrangien augmenté bien choisi, ce qui conduit naturellement à des algorithmes du type Uzawa–Douglas–Rachford. La méthodologie ci-dessus s'applique à des problèmes autres que E-MAD (l'équation de Pucci, par exemple). Les résultats d'essais numériques sont egalement presentés. Ils concernent la résolution du problème E-MAD sur le carré unité (0,1)×(0,1). Le premier problème test a une solution régulière (analytique, en fait) connue exactement ; on la retrouve facilement, avec une erreur d'approximation d'ordre optimal. La solution du second probleme test est aussi connue exactement ; le fait qu'elle soit dans sans être dans n'empêche pas d'obtenir une erreur d'approximation d'ordre optimal. Finalement, le troisième problème test n'ayant pas de solution régulière est plus difficile à résoudre ; les solutions approchées obtenues montrent que la courbure devient negative au voisinage des coins.
The main goal of this Note is to discuss a method for the numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions (the E-MAD problem). This method relies on the reformulation of E-MAD as a problem of Calculus of Variation involving the biharmonic operator (or closely related operators), and then to a saddle-point formulation for a well-chosen augmented Lagrangian functional, leading to iterative methods such as Uzawa–Douglas–Rachford. The above methodology applies to problems other than E-MAD (such as the Pucci equation). The results of numerical experiments are presented. They concern the solution of E-MAD on the unit square (0,1)×(0,1); the first test problem has a known smooth closed form solution which is easily computed with optimal order of convergence. The second test problem has also a known closed form solution; the fact that this solution has the -regularity, but not the one, does not prevent optimal order of convergence. Finally, the third test problem having no smooth solution is more costly to solve and leads to discrete solutions showing negative curvature near the corners.
Accepté le :
Publié le :
Edward J. Dean 1 ; Roland Glowinski 1
@article{CRMATH_2003__336_9_779_0, author = {Edward J. Dean and Roland Glowinski}, title = {Numerical solution of the two-dimensional elliptic {Monge{\textendash}Amp\`ere} equation with {Dirichlet} boundary conditions: an augmented {Lagrangian} approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00149-3}, language = {en}, }
TY - JOUR AU - Edward J. Dean AU - Roland Glowinski TI - Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach JO - Comptes Rendus. Mathématique PY - 2003 SP - 779 EP - 784 VL - 336 IS - 9 PB - Elsevier DO - 10.1016/S1631-073X(03)00149-3 LA - en ID - CRMATH_2003__336_9_779_0 ER -
%0 Journal Article %A Edward J. Dean %A Roland Glowinski %T Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach %J Comptes Rendus. Mathématique %D 2003 %P 779-784 %V 336 %N 9 %I Elsevier %R 10.1016/S1631-073X(03)00149-3 %G en %F CRMATH_2003__336_9_779_0
Edward J. Dean; Roland Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 779-784. doi : 10.1016/S1631-073X(03)00149-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00149-3/
[1] Nonlinear Analysis on Manifolds, Springer-Verlag, Berlin, 1982
[2] L.A. Caffarelli, The Monge–Ampère equation and optimal transportation: an elementary review, Lecture at ICM 2002, Beijing, August 20–28, 2002
[3] Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995
[4] Augmented Lagrangians, North-Holland, Amsterdam, 1983
[5] Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989
[6] Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981
[7] On the numerical solution of the equation zxxzyy−zxy2=f and its discretization, I, Numer. Math., Volume 54 (1988), pp. 271-293
Cité par Sources :
Commentaires - Politique