Comptes Rendus
Numerical Analysis
Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach
[Une méthode de lagrangien augmenté pour la résolution numérique du problème de Monge–Ampère elliptique en dimension deux avec conditions de Dirichlet]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 779-784.

The main goal of this Note is to discuss a method for the numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions (the E-MAD problem). This method relies on the reformulation of E-MAD as a problem of Calculus of Variation involving the biharmonic operator (or closely related operators), and then to a saddle-point formulation for a well-chosen augmented Lagrangian functional, leading to iterative methods such as Uzawa–Douglas–Rachford. The above methodology applies to problems other than E-MAD (such as the Pucci equation). The results of numerical experiments are presented. They concern the solution of E-MAD on the unit square (0,1)×(0,1); the first test problem has a known smooth closed form solution which is easily computed with optimal order of convergence. The second test problem has also a known closed form solution; the fact that this solution has the H2(Ω)-regularity, but not the C2(Ω¯) one, does not prevent optimal order of convergence. Finally, the third test problem having no smooth solution is more costly to solve and leads to discrete solutions showing negative curvature near the corners.

L'objet essentiel de cette Note est l'étude d'une méthode pour la résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique en dimension deux (le problème E-MAD). Cette méthode repose sur une reformulation de E-MAD comme un problème de Calcul des Variations impliquant l'opérateur bi-harmonique (ou des opérateurs voisins), puis sur une formulation de type point-selle pour un Lagrangien augmenté bien choisi, ce qui conduit naturellement à des algorithmes du type Uzawa–Douglas–Rachford. La méthodologie ci-dessus s'applique à des problèmes autres que E-MAD (l'équation de Pucci, par exemple). Les résultats d'essais numériques sont egalement presentés. Ils concernent la résolution du problème E-MAD sur le carré unité (0,1)×(0,1). Le premier problème test a une solution régulière (analytique, en fait) connue exactement ; on la retrouve facilement, avec une erreur d'approximation d'ordre optimal. La solution du second probleme test est aussi connue exactement ; le fait qu'elle soit dans H2(Ω) sans être dans C2(Ω¯) n'empêche pas d'obtenir une erreur d'approximation d'ordre optimal. Finalement, le troisième problème test n'ayant pas de solution régulière est plus difficile à résoudre ; les solutions approchées obtenues montrent que la courbure devient negative au voisinage des coins.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00149-3

Edward J. Dean 1 ; Roland Glowinski 1

1 Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA
@article{CRMATH_2003__336_9_779_0,
     author = {Edward J. Dean and Roland Glowinski},
     title = {Numerical solution of the two-dimensional elliptic {Monge{\textendash}Amp\`ere} equation with {Dirichlet} boundary conditions: an augmented {Lagrangian} approach},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00149-3},
     language = {en},
}
TY  - JOUR
AU  - Edward J. Dean
AU  - Roland Glowinski
TI  - Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 779
EP  - 784
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00149-3
LA  - en
ID  - CRMATH_2003__336_9_779_0
ER  - 
%0 Journal Article
%A Edward J. Dean
%A Roland Glowinski
%T Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach
%J Comptes Rendus. Mathématique
%D 2003
%P 779-784
%V 336
%N 9
%I Elsevier
%R 10.1016/S1631-073X(03)00149-3
%G en
%F CRMATH_2003__336_9_779_0
Edward J. Dean; Roland Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 779-784. doi : 10.1016/S1631-073X(03)00149-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00149-3/

[1] T. Aubin Nonlinear Analysis on Manifolds, Springer-Verlag, Berlin, 1982

[2] L.A. Caffarelli, The Monge–Ampère equation and optimal transportation: an elementary review, Lecture at ICM 2002, Beijing, August 20–28, 2002

[3] L.A. Caffarelli; X. Cabre Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995

[4] M. Fortin; R. Glowinski Augmented Lagrangians, North-Holland, Amsterdam, 1983

[5] R. Glowinski; P. Le Tallec Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989

[6] R. Glowinski; J.-L. Lions; R. Tremolieres Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981

[7] V.I. Oliker; L.D. Prussner On the numerical solution of the equation zxxzyyzxy2=f and its discretization, I, Numer. Math., Volume 54 (1988), pp. 271-293

  • Susanne Brenner; Li-yeng Sung; Zhiyu Tan; Hongchao Zhang A nonlinear least-squares convexity enforcing 𝐶⁰ interior penalty method for the Monge–Ampère equation on strictly convex smooth planar domains, Communications of the American Mathematical Society, Volume 4 (2024) no. 14, p. 607 | DOI:10.1090/cams/39
  • M. Bahari; A. Habbal; A. Ratnani; E. Sonnendrücker Adaptive Isogeometric Analysis using optimal transport and their fast solvers, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116570 | DOI:10.1016/j.cma.2023.116570
  • Hao Liu; Shingyu Leung; Jianliang Qian Operator-Splitting/Finite Element Methods for the Minkowski Problem, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 5, p. A3230 | DOI:10.1137/23m1590779
  • X. Tellier; C. Douthe; O. Baverel; L. Hauswirth Designing funicular grids with planar quads using isotropic Linear-Weingarten surfaces, International Journal of Solids and Structures, Volume 264 (2023), p. 112028 | DOI:10.1016/j.ijsolstr.2022.112028
  • Ming-Jun Lai; Jinsil Lee Trivariate Spline Collocation Methods for Numerical Solution to 3D Monge-Ampère Equation, Journal of Scientific Computing, Volume 95 (2023) no. 2 | DOI:10.1007/s10915-023-02183-9
  • Minqiang Xu; Runchang Lin; Qingsong Zou A C0 linear finite element method for a second‐order elliptic equation in non‐divergence form with Cordes coefficients, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 3, p. 2244 | DOI:10.1002/num.22965
  • Susanne C. Brenner; Li-yeng Sung; Zhiyu Tan; Hongchao Zhang A convexity enforcing C0 interior penalty method for the Monge–Ampère equation on convex polygonal domains, Numerische Mathematik, Volume 148 (2021) no. 3, p. 497 | DOI:10.1007/s00211-021-01210-x
  • Martijn J. H. Anthonissen; Lotte B. Romijn; Jan H. M. ten Thije Boonkkamp; Wilbert L. IJzerman Unified mathematical framework for a class of fundamental freeform optical systems, Optics Express, Volume 29 (2021) no. 20, p. 31650 | DOI:10.1364/oe.438920
  • Michael Neilan; Abner J. Salgado; Wujun Zhang The Monge–Ampère equation, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 105 | DOI:10.1016/bs.hna.2019.05.003
  • Weifeng Qiu; Lan Tang A note on the Monge–Ampère type equations with general source terms, Mathematics of Computation, Volume 89 (2020) no. 326, p. 2675 | DOI:10.1090/mcom/3554
  • Chad R. Westphal A Newton Div-Curl Least-Squares Finite Element Method for the Elliptic Monge–Ampère Equation, Computational Methods in Applied Mathematics, Volume 19 (2019) no. 3, p. 631 | DOI:10.1515/cmam-2018-0196
  • Roland Glowinski; Hao Liu; Shingyu Leung; Jianliang Qian A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation, Journal of Scientific Computing, Volume 79 (2019) no. 1, p. 1 | DOI:10.1007/s10915-018-0839-y
  • Ricardo H. Nochetto; Wujun Zhang Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation, Numerische Mathematik, Volume 141 (2019) no. 1, p. 253 | DOI:10.1007/s00211-018-0988-9
  • Haodi Chen; Genggeng Huang; Xu-Jia Wang Convergence Rate Estimates for Aleksandrov's Solution to the Monge–Ampère Equation, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 1, p. 173 | DOI:10.1137/18m1197217
  • Fethi BEN BELGACEM Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia, Volume 38 (2018) no. 4, p. 1285 | DOI:10.1016/s0252-9602(18)30814-2
  • Ricardo H. Nochetto; Wujun Zhang Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form, Foundations of Computational Mathematics, Volume 18 (2018) no. 3, p. 537 | DOI:10.1007/s10208-017-9347-y
  • Hayden Schaeffer; Thomas Y. Hou An Accelerated Method for Nonlinear Elliptic PDE, Journal of Scientific Computing, Volume 69 (2016) no. 2, p. 556 | DOI:10.1007/s10915-016-0215-8
  • Roland Glowinski ADMM and Non-convex Variational Problems, Splitting Methods in Communication, Imaging, Science, and Engineering (2016), p. 251 | DOI:10.1007/978-3-319-41589-5_8
  • Gerard Awanou Spline element method for Monge–Ampère equations, BIT Numerical Mathematics, Volume 55 (2015) no. 3, p. 625 | DOI:10.1007/s10543-014-0524-y
  • Kolja Brix; Yasemin Hafizogullari; Andreas Platen Solving the Monge–Ampère equations for the inverse reflector problem, Mathematical Models and Methods in Applied Sciences, Volume 25 (2015) no. 05, p. 803 | DOI:10.1142/s0218202515500190
  • Xiaobing Feng; Chiu-Yen Kao; Thomas Lewis Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations, Journal of Computational and Applied Mathematics, Volume 254 (2013), p. 81 | DOI:10.1016/j.cam.2013.02.001
  • Michael Neilan Quadratic Finite Element Approximations of the Monge-Ampère Equation, Journal of Scientific Computing, Volume 54 (2013) no. 1, p. 200 | DOI:10.1007/s10915-012-9617-4
  • Omar Lakkis; Tristan Pryer A Finite Element Method for Nonlinear Elliptic Problems, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 4, p. A2025 | DOI:10.1137/120887655
  • Xiaobing Feng; Roland Glowinski; Michael Neilan Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations, SIAM Review, Volume 55 (2013) no. 2, p. 205 | DOI:10.1137/110825960
  • Mohamed M. Sulman; J.F. Williams; Robert D. Russell An efficient approach for the numerical solution of the Monge–Ampère equation, Applied Numerical Mathematics, Volume 61 (2011) no. 3, p. 298 | DOI:10.1016/j.apnum.2010.10.006
  • Roland Glowinski; Anthony Wachs On the Numerical Simulation of Viscoplastic Fluid Flow, Numerical Methods for Non-Newtonian Fluids, Volume 16 (2011), p. 483 | DOI:10.1016/b978-0-444-53047-9.00006-x
  • Alexandre Caboussat; Roland Glowinski; Allison Leonard Looking for the best constant in a Sobolev inequality: a numerical approach, Calcolo, Volume 47 (2010) no. 4, p. 211 | DOI:10.1007/s10092-010-0020-y
  • V. Zheligovsky; O. Podvigina; U. Frisch The Monge–Ampère equation: Various forms and numerical solution, Journal of Computational Physics, Volume 229 (2010) no. 13, p. 5043 | DOI:10.1016/j.jcp.2010.03.025
  • K-H Brenner General solution of two-dimensional beam-shaping with two surfaces, Journal of Physics: Conference Series, Volume 206 (2010), p. 012021 | DOI:10.1088/1742-6596/206/1/012021
  • Alexandre Caboussat; Roland Glowinski Numerical Methods for the Vector-Valued Solutions of Non-smooth Eigenvalue Problems, Journal of Scientific Computing, Volume 45 (2010) no. 1-3, p. 64 | DOI:10.1007/s10915-010-9383-0
  • Chris J. Budd; Weizhang Huang; Robert D. Russell Adaptivity with moving grids, Acta Numerica, Volume 18 (2009), p. 111 | DOI:10.1017/s0962492906400015
  • Xiaobing Feng; Michael Neilan Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations, Journal of Scientific Computing, Volume 38 (2009) no. 1, p. 74 | DOI:10.1007/s10915-008-9221-9
  • R. Glowinski; E. J. Dean; G. Guidoboni; L. H. Juárez; T. -W. Pan Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation, Japan Journal of Industrial and Applied Mathematics, Volume 25 (2008) no. 1, p. 1 | DOI:10.1007/bf03167512
  • Edward J. Dean; Roland Glowinski On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach, Partial Differential Equations, Volume 16 (2008), p. 43 | DOI:10.1007/978-1-4020-8758-5_3
  • Klaus Böhmer On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 3, p. 1212 | DOI:10.1137/040621740
  • Roland Glowinski Sur la permanence de l’œuvre de Gaspard Monge dans la science des 20ème et 21ème siècles, Bulletin de la Sabix (2007) no. 41, p. 81 | DOI:10.4000/sabix.112
  • E.J. Dean; R. Glowinski Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type, Computer Methods in Applied Mechanics and Engineering, Volume 195 (2006) no. 13-16, p. 1344 | DOI:10.1016/j.cma.2005.05.023
  • Hongli Ding; Bingen Yang; Michael Lou; Houfei Fang, AIAA Space 2003 Conference Exposition (2003) | DOI:10.2514/6.2003-6322

Cité par 38 documents. Sources : Crossref

Commentaires - Politique