Comptes Rendus
Numerical Analysis
Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach
[Résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique en dimension deux par une méthode de moindres carrés.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 887-892.

La résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique bi-dimensionelle, soit : detD2ψ=f in Ω, ψ=g on ∂Ω (ici, ΩR2 et f>0), a été étudiée dans une note précédente [C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784]. La méthode décrite là, repose sur un algorithme de Lagrangien augmenté opérant dans l'espace H2(Ω) et des espaces associés de fonctions à valeurs tensorielles symétriques. Dans les cas où le problème ci-dessus n'a pas de solution dans H2(Ω), alors que les données f and g verifient {f,g}L1(Ω)×H3/2(Ω), diverses observations et analogies suggèrent fortement que l'algorithme de Lagrangien augmenté décrit dans notre note précédente converge-en un certain sens-vers une solution appartenant à Vg={φ|φH2(Ω),φ=g on Ω} et du type moindres carrés. L'objet de cette note est la résolution du problème de Monge–Ampère Dirichlet, directement par une méthode de moindres carrés. Cette méthode repose sur la minimisation sur l'ensemble Vg×Qf (avec Qf={q|q=(qij)1i,j2,qijL2(Ω),i,j,1i,j2,q=qt,detq=f}), d'une fonction coût bien choisie, de type moindres carrés. D'un point de vue pratique, on résout le problème de minimisation ci-dessus par un algorithme de type relaxation qui opère alternativement dans Vg et Qf ; cet algorithme est facile à combiner aux approximations par élements finis mixtes utilisées dans la note précédente. Des essais numériques montrent que la méthode de moindres carrés ci-dessus a de bonnes propriétés de convergence quand le problème de Monge–Ampère Dirichlet a des solutions dans Vg ; ces essais montrent également que lorsque problème ci-dessus n'a pas de solution dans Vg, bien que Vg et Qf soient non vides, la nouvelle méthode reproduit les solutions obtenues par Lagrangien augmenté, mais ce plus rapidement.

We addressed, in a previous note [C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784], the numerical solution of the Dirichlet problem for the two-dimensional elliptic Monge–Ampère equation, namely: detD2ψ=f in Ω, ψ=g on ∂Ω (ΩR2 and f>0, here). The method discussed previously relies on an augmented Lagrangian algorithm operating in the space H2(Ω) and related functional spaces of symmetric tensor-valued functions. In the particular case where the above problem has no solution in H2(Ω), while the data f and g verify {f,g}L1(Ω)×H3/2(Ω), there is strong evidence that the augmented Lagrangian algorithm discussed in previously converges-in some sense-to a least squares solution belonging to Vg={φ|φH2(Ω),φ=g on Ω}. Our goal in this note is to discuss a least-squares based alternative solution method for the Monge–Ampère Dirichlet problem. This method relies on the minimization on the set Vg×Qf (with Qf={q|q=(qij)1i,j2,qijL2(Ω),i,j,1i,j2,q=qt,detq=f}) of a well-chosen least-squares functional. From a practical point of view we solve the above minimization problem via a relaxation type algorithm, operating alternatively in Vg and Qf and very easy to combine to the mixed finite element approximations employed in the earlier work. Numerical experiments show that the above method has good convergence properties when the Monge–Ampère Dirichlet problem has solutions in Vg; they show also that, for cases where the above problem has no solution in Vg, while neither Vg nor Qf are empty, the new method reproduces the solutions obtained via the augmented Lagrangian approach, but faster.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.09.018

Edward J. Dean 1 ; Roland Glowinski 1, 2

1 Department of Mathematics, University of Houston, Houston, Texas 77024-3008, USA
2 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2004__339_12_887_0,
     author = {Edward J. Dean and Roland Glowinski},
     title = {Numerical solution of the two-dimensional elliptic {Monge{\textendash}Amp\`ere} equation with {Dirichlet} boundary conditions: a least-squares approach},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {887--892},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.018},
     language = {en},
}
TY  - JOUR
AU  - Edward J. Dean
AU  - Roland Glowinski
TI  - Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 887
EP  - 892
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.018
LA  - en
ID  - CRMATH_2004__339_12_887_0
ER  - 
%0 Journal Article
%A Edward J. Dean
%A Roland Glowinski
%T Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach
%J Comptes Rendus. Mathématique
%D 2004
%P 887-892
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crma.2004.09.018
%G en
%F CRMATH_2004__339_12_887_0
Edward J. Dean; Roland Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 887-892. doi : 10.1016/j.crma.2004.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.018/

[1] E.J. Dean; R. Glowinski Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 779-784

[2] M. Fortin; R. Glowinski Augmented Lagrangians, North-Holland, Amsterdam, 1983

[3] R. Glowinski; P. Le Tallec Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, PA, 1989

[4] E.J. Dean, R. Glowinski, Numerical methods for fully nonlinear equations elliptic equations of the Monge–Ampère type, Comput. Methods Appl. Mech. Engrg., in press

[5] E.J. Dean, R. Glowinski, T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge–Ampère equation, in: Proceedings of the IFIP-WG7.2 Conference, Nice, 2003, Kluwer, in press

[6] R. Glowinski Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176

[7] R. Glowinski; J.L. Lions; R. Trémolières Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981

[8] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

  • Susanne C. Brenner; Li-Yeng Sung; Zhiyu Tan; Hongchao Zhang A nonlinear least-squares convexity enforcing C0 interior penalty method for the Monge-Ampère equation on strictly convex smooth planar domains, Communications of the American Mathematical Society, Volume 4 (2024), pp. 607-640 | DOI:10.1090/cams/39 | Zbl:7937619
  • M. Bahari; A. Habbal; A. Ratnani; E. Sonnendrücker Adaptive isogeometric analysis using optimal transport and their fast solvers, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 33 (Id/No 116570) | DOI:10.1016/j.cma.2023.116570 | Zbl:1539.65165
  • Hao Liu; Shingyu Leung; Jianliang Qian Operator-splitting/finite element methods for the Minkowski problem, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 5, p. a3230-a3257 | DOI:10.1137/23m1590779 | Zbl:7931276
  • X. Tellier; C. Douthe; O. Baverel; L. Hauswirth Designing funicular grids with planar quads using isotropic Linear-Weingarten surfaces, International Journal of Solids and Structures, Volume 264 (2023), p. 112028 | DOI:10.1016/j.ijsolstr.2022.112028
  • Ming-Jun Lai; Jinsil Lee Trivariate spline collocation methods for numerical solution to 3D Monge-Ampère equation, Journal of Scientific Computing, Volume 95 (2023) no. 2, p. 29 (Id/No 56) | DOI:10.1007/s10915-023-02183-9 | Zbl:1516.65134
  • Susanne C. Brenner; Li-yeng Sung; Zhiyu Tan; Hongchao Zhang A convexity enforcing C0 interior penalty method for the Monge-Ampère equation on convex polygonal domains, Numerische Mathematik, Volume 148 (2021) no. 3, pp. 497-524 | DOI:10.1007/s00211-021-01210-x | Zbl:1477.65194
  • Martijn J. H. Anthonissen; Lotte B. Romijn; Jan H. M. ten Thije Boonkkamp; Wilbert L. IJzerman Unified mathematical framework for a class of fundamental freeform optical systems, Optics Express, Volume 29 (2021) no. 20, p. 31650 | DOI:10.1364/oe.438920
  • Michael Neilan; Abner J. Salgado; Wujun Zhang The Monge–Ampère equation, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 105 | DOI:10.1016/bs.hna.2019.05.003
  • Weifeng Qiu; Lan Tang A note on the Monge-Ampère type equations with general source terms, Mathematics of Computation, Volume 89 (2020) no. 326, pp. 2675-2706 | DOI:10.1090/mcom/3554 | Zbl:1446.65179
  • Roland Glowinski; Hao Liu; Shingyu Leung; Jianliang Qian A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation, Journal of Scientific Computing, Volume 79 (2019) no. 1, pp. 1-47 | DOI:10.1007/s10915-018-0839-y | Zbl:1447.65141
  • Ricardo H. Nochetto; Wujun Zhang Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampère equation, Numerische Mathematik, Volume 141 (2019) no. 1, pp. 253-288 | DOI:10.1007/s00211-018-0988-9 | Zbl:1407.65263
  • Fethi Ben Belgacem Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia. Series B. (English Edition), Volume 38 (2018) no. 4, pp. 1285-1295 | DOI:10.1016/s0252-9602(18)30814-2 | Zbl:1438.35137
  • Hayden Schaeffer; Thomas Y. Hou An accelerated method for nonlinear elliptic PDE, Journal of Scientific Computing, Volume 69 (2016) no. 2, pp. 556-580 | DOI:10.1007/s10915-016-0215-8 | Zbl:1368.65004
  • Gerard Awanou On standard finite difference discretizations of the elliptic Monge-Ampère equation, Journal of Scientific Computing, Volume 69 (2016) no. 2, pp. 892-904 | DOI:10.1007/s10915-016-0220-y | Zbl:1368.65211
  • Gerard Awanou Spline element method for Monge-Ampère equations, BIT, Volume 55 (2015) no. 3, pp. 625-646 | DOI:10.1007/s10543-014-0524-y | Zbl:1328.65230
  • A. I. Kozhanov On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations, Differential Equations, Volume 51 (2015) no. 8, pp. 1043-1050 | DOI:10.1134/s001226611508008x | Zbl:1332.35006
  • Kolja Brix; Yasemin Hafizogullari; Andreas Platen Solving the Monge-Ampère equations for the inverse reflector problem, M3AS. Mathematical Models Methods in Applied Sciences, Volume 25 (2015) no. 5, pp. 803-837 | DOI:10.1142/s0218202515500190 | Zbl:1326.35365
  • A. M. Kuz'; B. I. Ptashnyk A problem with condition containing an integral term for a parabolic-hyperbolic equation, Ukrainian Mathematical Journal, Volume 67 (2015) no. 5, pp. 723-734 | DOI:10.1007/s11253-015-1110-4 | Zbl:1350.35137
  • E. I. Moiseev; V. I. Korzyuk; I. S. Kozlovskaya Classical solution of a problem with an integral condition for the one-dimensional wave equation, Differential Equations, Volume 50 (2014) no. 10, pp. 1364-1377 | DOI:10.1134/s0012266114100103 | Zbl:1310.35152
  • F. F. Ivanauskas; Yu. A. Novitski; M. P. Sapagovas On the stability of an explicit difference scheme for hyperbolic equations with nonlocal boundary conditions, Differential Equations, Volume 49 (2013) no. 7, pp. 849-856 | DOI:10.1134/s0012266113070070 | Zbl:1282.65108
  • Alexandre Caboussat; Roland Glowinski; Danny C. Sorensen A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 780 | DOI:10.1051/cocv/2012033
  • Michael Neilan Quadratic finite element approximations of the Monge-Ampère equation, Journal of Scientific Computing, Volume 54 (2013) no. 1, pp. 200-226 | DOI:10.1007/s10915-012-9617-4 | Zbl:1272.65094
  • Xiaobing Feng; Roland Glowinski; Michael Neilan Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations, SIAM Review, Volume 55 (2013) no. 2, p. 205 | DOI:10.1137/110825960
  • A. M. Kuz'; B. I. Ptashnyk A problem with integral conditions with respect to time for Gårding hyperbolic equations, Ukrainian Mathematical Journal, Volume 65 (2013) no. 2, pp. 277-293 | DOI:10.1007/s11253-013-0777-7 | Zbl:1278.35143
  • Eitan Tadmor A review of numerical methods for nonlinear partial differential equations, Bulletin of the American Mathematical Society. New Series, Volume 49 (2012) no. 4, pp. 507-554 | DOI:10.1090/s0273-0979-2012-01379-4 | Zbl:1258.65073
  • Mohamed M. Sulman; J. F. Williams; Robert D. Russell An efficient approach for the numerical solution of the Monge-Ampère equation, Applied Numerical Mathematics, Volume 61 (2011) no. 3, pp. 298-307 | DOI:10.1016/j.apnum.2010.10.006 | Zbl:1215.65178
  • V. Zheligovsky; O. Podvigina; U. Frisch The Monge-Ampère equation: various forms and numerical solution, Journal of Computational Physics, Volume 229 (2010) no. 13, pp. 5043-5061 | DOI:10.1016/j.jcp.2010.03.025 | Zbl:1194.65141
  • A. M. Abdrakhmanov Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order, Mathematical Notes, Volume 88 (2010) no. 2, pp. 151-159 | DOI:10.1134/s000143461007014x | Zbl:1254.35055
  • Danny C. Sorensen; Roland Glowinski A quadratically constrained minimization problem arising from PDE of Monge-Ampère type, Numerical Algorithms, Volume 53 (2010) no. 1, pp. 53-66 | DOI:10.1007/s11075-009-9300-5 | Zbl:1187.65073
  • Chris J. Budd; Weizhang Huang; Robert D. Russell Adaptivity with moving grids, Acta Numerica, Volume 18 (2009), pp. 111-241 | DOI:10.1017/s0962492906400015 | Zbl:1181.65122
  • Xiaobing Feng; Michael Neilan Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations, Journal of Scientific Computing, Volume 38 (2009) no. 1, pp. 74-98 | DOI:10.1007/s10915-008-9221-9 | Zbl:1203.65252
  • R. Glowinski; E. J. Dean; G. Guidoboni; L. H. Juárez; T.-W. Pan Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monte-Ampère equation, Japan Journal of Industrial and Applied Mathematics, Volume 25 (2008) no. 1, pp. 1-63 | DOI:10.1007/bf03167512 | Zbl:1141.76043
  • L. A. Caffarelli; R. Glowinski Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization, Journal of Numerical Mathematics, Volume 16 (2008) no. 3 | DOI:10.1515/jnum.2008.009
  • Edward J. Dean; Roland Glowinski On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach, Partial Differential Equations, Volume 16 (2008), p. 43 | DOI:10.1007/978-1-4020-8758-5_3
  • Bijan Mohammadi Optimal transport, shape optimization and global minimization, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 9, pp. 591-596 | DOI:10.1016/j.crma.2007.03.015 | Zbl:1115.65075
  • L. S. Pul'kina On a certain nonlocal problem for a hyperbolic equation, Journal of Mathematical Sciences (New York), Volume 144 (2007) no. 1, pp. 3832-3840 | DOI:10.1007/s10958-007-0236-9 | Zbl:1180.35324
  • Grégoire Loeper; Francesca Rapetti Numerical solution of the Monge–Ampère equation by a Newton's algorithm, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 4, pp. 319-324 | DOI:10.1016/j.crma.2004.12.018 | Zbl:1067.65119
  • Edward J. Dean; Roland Glowinski On the numerical solution of a two-dimensional Pucci's equation with Dirichlet boundary conditions: a least-squares approach, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 6, pp. 375-380 | DOI:10.1016/j.crma.2005.08.002 | Zbl:1081.65543

Cité par 38 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: