[Résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique en dimension deux par une méthode de moindres carrés.]
La résolution numérique du problème de Dirichlet pour l'équation de Monge–Ampère elliptique bi-dimensionelle, soit :
We addressed, in a previous note [C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784], the numerical solution of the Dirichlet problem for the two-dimensional elliptic Monge–Ampère equation, namely:
Accepté le :
Publié le :
Edward J. Dean 1 ; Roland Glowinski 1, 2
@article{CRMATH_2004__339_12_887_0, author = {Edward J. Dean and Roland Glowinski}, title = {Numerical solution of the two-dimensional elliptic {Monge{\textendash}Amp\`ere} equation with {Dirichlet} boundary conditions: a least-squares approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--892}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.09.018}, language = {en}, }
TY - JOUR AU - Edward J. Dean AU - Roland Glowinski TI - Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach JO - Comptes Rendus. Mathématique PY - 2004 SP - 887 EP - 892 VL - 339 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2004.09.018 LA - en ID - CRMATH_2004__339_12_887_0 ER -
%0 Journal Article %A Edward J. Dean %A Roland Glowinski %T Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach %J Comptes Rendus. Mathématique %D 2004 %P 887-892 %V 339 %N 12 %I Elsevier %R 10.1016/j.crma.2004.09.018 %G en %F CRMATH_2004__339_12_887_0
Edward J. Dean; Roland Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 887-892. doi : 10.1016/j.crma.2004.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.018/
[1] Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 779-784
[2] Augmented Lagrangians, North-Holland, Amsterdam, 1983
[3] Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, PA, 1989
[4] E.J. Dean, R. Glowinski, Numerical methods for fully nonlinear equations elliptic equations of the Monge–Ampère type, Comput. Methods Appl. Mech. Engrg., in press
[5] E.J. Dean, R. Glowinski, T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge–Ampère equation, in: Proceedings of the IFIP-WG7.2 Conference, Nice, 2003, Kluwer, in press
[6] Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176
[7] Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981
[8] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
- A nonlinear least-squares convexity enforcing
interior penalty method for the Monge-Ampère equation on strictly convex smooth planar domains, Communications of the American Mathematical Society, Volume 4 (2024), pp. 607-640 | DOI:10.1090/cams/39 | Zbl:7937619 - Adaptive isogeometric analysis using optimal transport and their fast solvers, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 33 (Id/No 116570) | DOI:10.1016/j.cma.2023.116570 | Zbl:1539.65165
- Operator-splitting/finite element methods for the Minkowski problem, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 5, p. a3230-a3257 | DOI:10.1137/23m1590779 | Zbl:7931276
- Designing funicular grids with planar quads using isotropic Linear-Weingarten surfaces, International Journal of Solids and Structures, Volume 264 (2023), p. 112028 | DOI:10.1016/j.ijsolstr.2022.112028
- Trivariate spline collocation methods for numerical solution to 3D Monge-Ampère equation, Journal of Scientific Computing, Volume 95 (2023) no. 2, p. 29 (Id/No 56) | DOI:10.1007/s10915-023-02183-9 | Zbl:1516.65134
- A convexity enforcing
interior penalty method for the Monge-Ampère equation on convex polygonal domains, Numerische Mathematik, Volume 148 (2021) no. 3, pp. 497-524 | DOI:10.1007/s00211-021-01210-x | Zbl:1477.65194 - Unified mathematical framework for a class of fundamental freeform optical systems, Optics Express, Volume 29 (2021) no. 20, p. 31650 | DOI:10.1364/oe.438920
- The Monge–Ampère equation, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 105 | DOI:10.1016/bs.hna.2019.05.003
- A note on the Monge-Ampère type equations with general source terms, Mathematics of Computation, Volume 89 (2020) no. 326, pp. 2675-2706 | DOI:10.1090/mcom/3554 | Zbl:1446.65179
- A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation, Journal of Scientific Computing, Volume 79 (2019) no. 1, pp. 1-47 | DOI:10.1007/s10915-018-0839-y | Zbl:1447.65141
- Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampère equation, Numerische Mathematik, Volume 141 (2019) no. 1, pp. 253-288 | DOI:10.1007/s00211-018-0988-9 | Zbl:1407.65263
- Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia. Series B. (English Edition), Volume 38 (2018) no. 4, pp. 1285-1295 | DOI:10.1016/s0252-9602(18)30814-2 | Zbl:1438.35137
- An accelerated method for nonlinear elliptic PDE, Journal of Scientific Computing, Volume 69 (2016) no. 2, pp. 556-580 | DOI:10.1007/s10915-016-0215-8 | Zbl:1368.65004
- On standard finite difference discretizations of the elliptic Monge-Ampère equation, Journal of Scientific Computing, Volume 69 (2016) no. 2, pp. 892-904 | DOI:10.1007/s10915-016-0220-y | Zbl:1368.65211
- Spline element method for Monge-Ampère equations, BIT, Volume 55 (2015) no. 3, pp. 625-646 | DOI:10.1007/s10543-014-0524-y | Zbl:1328.65230
- On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations, Differential Equations, Volume 51 (2015) no. 8, pp. 1043-1050 | DOI:10.1134/s001226611508008x | Zbl:1332.35006
- Solving the Monge-Ampère equations for the inverse reflector problem, M
AS. Mathematical Models Methods in Applied Sciences, Volume 25 (2015) no. 5, pp. 803-837 | DOI:10.1142/s0218202515500190 | Zbl:1326.35365 - A problem with condition containing an integral term for a parabolic-hyperbolic equation, Ukrainian Mathematical Journal, Volume 67 (2015) no. 5, pp. 723-734 | DOI:10.1007/s11253-015-1110-4 | Zbl:1350.35137
- Classical solution of a problem with an integral condition for the one-dimensional wave equation, Differential Equations, Volume 50 (2014) no. 10, pp. 1364-1377 | DOI:10.1134/s0012266114100103 | Zbl:1310.35152
- On the stability of an explicit difference scheme for hyperbolic equations with nonlocal boundary conditions, Differential Equations, Volume 49 (2013) no. 7, pp. 849-856 | DOI:10.1134/s0012266113070070 | Zbl:1282.65108
- A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 780 | DOI:10.1051/cocv/2012033
- Quadratic finite element approximations of the Monge-Ampère equation, Journal of Scientific Computing, Volume 54 (2013) no. 1, pp. 200-226 | DOI:10.1007/s10915-012-9617-4 | Zbl:1272.65094
- Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations, SIAM Review, Volume 55 (2013) no. 2, p. 205 | DOI:10.1137/110825960
- A problem with integral conditions with respect to time for Gårding hyperbolic equations, Ukrainian Mathematical Journal, Volume 65 (2013) no. 2, pp. 277-293 | DOI:10.1007/s11253-013-0777-7 | Zbl:1278.35143
- A review of numerical methods for nonlinear partial differential equations, Bulletin of the American Mathematical Society. New Series, Volume 49 (2012) no. 4, pp. 507-554 | DOI:10.1090/s0273-0979-2012-01379-4 | Zbl:1258.65073
- An efficient approach for the numerical solution of the Monge-Ampère equation, Applied Numerical Mathematics, Volume 61 (2011) no. 3, pp. 298-307 | DOI:10.1016/j.apnum.2010.10.006 | Zbl:1215.65178
- The Monge-Ampère equation: various forms and numerical solution, Journal of Computational Physics, Volume 229 (2010) no. 13, pp. 5043-5061 | DOI:10.1016/j.jcp.2010.03.025 | Zbl:1194.65141
- Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order, Mathematical Notes, Volume 88 (2010) no. 2, pp. 151-159 | DOI:10.1134/s000143461007014x | Zbl:1254.35055
- A quadratically constrained minimization problem arising from PDE of Monge-Ampère type, Numerical Algorithms, Volume 53 (2010) no. 1, pp. 53-66 | DOI:10.1007/s11075-009-9300-5 | Zbl:1187.65073
- Adaptivity with moving grids, Acta Numerica, Volume 18 (2009), pp. 111-241 | DOI:10.1017/s0962492906400015 | Zbl:1181.65122
- Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations, Journal of Scientific Computing, Volume 38 (2009) no. 1, pp. 74-98 | DOI:10.1007/s10915-008-9221-9 | Zbl:1203.65252
- Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monte-Ampère equation, Japan Journal of Industrial and Applied Mathematics, Volume 25 (2008) no. 1, pp. 1-63 | DOI:10.1007/bf03167512 | Zbl:1141.76043
- Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization, Journal of Numerical Mathematics, Volume 16 (2008) no. 3 | DOI:10.1515/jnum.2008.009
- On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach, Partial Differential Equations, Volume 16 (2008), p. 43 | DOI:10.1007/978-1-4020-8758-5_3
- Optimal transport, shape optimization and global minimization, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 9, pp. 591-596 | DOI:10.1016/j.crma.2007.03.015 | Zbl:1115.65075
- On a certain nonlocal problem for a hyperbolic equation, Journal of Mathematical Sciences (New York), Volume 144 (2007) no. 1, pp. 3832-3840 | DOI:10.1007/s10958-007-0236-9 | Zbl:1180.35324
- Numerical solution of the Monge–Ampère equation by a Newton's algorithm, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 4, pp. 319-324 | DOI:10.1016/j.crma.2004.12.018 | Zbl:1067.65119
- On the numerical solution of a two-dimensional Pucci's equation with Dirichlet boundary conditions: a least-squares approach, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 6, pp. 375-380 | DOI:10.1016/j.crma.2005.08.002 | Zbl:1081.65543
Cité par 38 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier