[Décompositions de Hoeffding pour des suites échangeables et représentation chaotique des fonctionnelles des processus de Dirichlet]
On considère une suite échangeable
Consider an exchangeable sequence
Accepté le :
Publié le :
Giovanni Peccati 1, 2
@article{CRMATH_2003__336_10_845_0, author = {Giovanni Peccati}, title = {Hoeffding decompositions for exchangeable sequences and chaotic representation of functionals of {Dirichlet} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {845--850}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00186-9}, language = {en}, }
TY - JOUR AU - Giovanni Peccati TI - Hoeffding decompositions for exchangeable sequences and chaotic representation of functionals of Dirichlet processes JO - Comptes Rendus. Mathématique PY - 2003 SP - 845 EP - 850 VL - 336 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(03)00186-9 LA - en ID - CRMATH_2003__336_10_845_0 ER -
%0 Journal Article %A Giovanni Peccati %T Hoeffding decompositions for exchangeable sequences and chaotic representation of functionals of Dirichlet processes %J Comptes Rendus. Mathématique %D 2003 %P 845-850 %V 336 %N 10 %I Elsevier %R 10.1016/S1631-073X(03)00186-9 %G en %F CRMATH_2003__336_10_845_0
Giovanni Peccati. Hoeffding decompositions for exchangeable sequences and chaotic representation of functionals of Dirichlet processes. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 845-850. doi : 10.1016/S1631-073X(03)00186-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00186-9/
[1] Exchangeability and related topics, École d'été de Probabilités de Saint-Flour XIII, Lecture Notes in Math., 1117, Springer, New York, 1983
[2] Ferguson distribution via Pólya urn schemes, Ann. Statist., Volume 1 (1973) no. 2, pp. 353-355
[3] Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics, Ann. Statist., Volume 29 (2001) no. 3, pp. 353-365
[4] An Edgeworth expansion for finite population statistics, Ann. Probab., Volume 30 (2002), pp. 1238-1265
[5] A Bayesian analysis of some non-parametric problems, Ann. Statist., Volume 1 (1973) no. 2, pp. 209-230
[6] A class of statistics with asymptotically normal distribution, Ann. Math. Statist., Volume 19 (1948) no. 2, pp. 293-325
[7] Theory of U-Statistics, Kluwer Academic, London, 1994
[8] G. Peccati, A note about Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations, Prépublication n. 717 du Laboratoire de Probabilités et Modèles Aléatoires de l'Université de Paris VI, 2002, submitted
[9] G. Peccati, Multiple integral representation for functionals of Dirichlet processes, Prépublication n. 748 du Laboratoire de Probabilités et Modèles Aléatoires de l'Université de Paris VI, 2002, submitted
[10] G. Peccati, Chaos Brownien d'espace–temps, décompositions d'Hoeffding et problèmes de convergence associés, Thèse de Doctorat, Université de Paris VI, 2002
[11] Some developments of the Blackwell–MacQueen urn scheme, Statistics, Probability and Game Theory: papers in honor of David Blackwell, Lecture Notes – Monograph Series, 30, Institute of Mathematical Statistics, Hayward, CA, 1996
[12] Homogeneous chaos revisited, Séminaire de Probabilités XXI, Lecture Notes in Math., 1274, Springer, 1987, pp. 1-8
[13] Normal approximation for finite-population U-statistics, Acta Math. Appl. Sinica, Volume 6 (1990) no. 3, pp. 263-272
Cité par Sources :
Commentaires - Politique