[Nombres de Chern pour deux familles de fibrations de Hopf non commutatives]
Nous considérons des fibrés en droites non commutatifs associés à la fibration de Hopf quantique de SUq(2) sur toutes les sphères quantiques de Podleś ainsi qu'avec une fibration de Hopf localement triviale de S3pq. Ces fibrés sont construits comme des modules projectifs associés aux représentations de dimension 1 de U(1) avec des extensions galoisiennes relatives aux fibrés principaux de SUq(2) et de S3pq. Nous montrons que les nombres de Chern de ces fibrés coı̈ncident avec les degrés des représentations qui les définissent.
We consider noncommutative line bundles associated with the Hopf fibrations of SUq(2) over all Podleś spheres and with a locally trivial Hopf fibration of S3pq. These bundles are given as finitely generated projective modules associated via 1-dimensional representations of U(1) with Galois-type extensions encoding the principal fibrations of SUq(2) and S3pq. We show that the Chern numbers of these modules coincide with the winding numbers of representations defining them.
Accepté le :
Publié le :
Piotr M. Hajac 1, 2, 3 ; Rainer Matthes 4 ; Wojciech Szymański 5
@article{CRMATH_2003__336_11_925_0, author = {Piotr M. Hajac and Rainer Matthes and Wojciech Szyma\'nski}, title = {Chern numbers for two families of noncommutative {Hopf} fibrations}, journal = {Comptes Rendus. Math\'ematique}, pages = {925--930}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00190-0}, language = {en}, }
TY - JOUR AU - Piotr M. Hajac AU - Rainer Matthes AU - Wojciech Szymański TI - Chern numbers for two families of noncommutative Hopf fibrations JO - Comptes Rendus. Mathématique PY - 2003 SP - 925 EP - 930 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00190-0 LA - en ID - CRMATH_2003__336_11_925_0 ER -
Piotr M. Hajac; Rainer Matthes; Wojciech Szymański. Chern numbers for two families of noncommutative Hopf fibrations. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 925-930. doi : 10.1016/S1631-073X(03)00190-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00190-0/
[1] Quantum homogeneous spaces as quantum quotient spaces, J. Math. Phys., Volume 37 (1996), pp. 2388-2399
[2] T. Brzeziński, P.M. Hajac, The Chern–Galois character, joint project. See http://www.fuw.edu.pl/~pmh for a preliminary version
[3] Quantum geometry of algebra factorisations and coalgebra bundles, Comm. Math. Phys., Volume 213 (2000), pp. 491-521
[4] Covering and gluing of algebras and differential algebras, J. Geom. Phys., Volume 32 (2000), pp. 364-396
[5] Connections on locally trivial quantum principal fibre bundles, J. Geom. Phys., Volume 41 (2002), pp. 114-165
[6] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[7] Bundles over quantum sphere and noncommutative index theorem, K-Theory, Volume 21 (2000), pp. 141-150
[8] P.M. Hajac, R. Matthes, W. Szymański, A locally trivial quantum Hopf fibration, to appear in Algebr. Represent. Theory, | arXiv
[9] A two-parameter quantum deformation of the unit disc, J. Funct. Anal., Volume 115 (1993), pp. 1-23
[10] Cyclic Homology, Springer-Verlag, Berlin, 1998
[11] Noncommutative differential geometry on the quantum two sphere of Podleś. I: An algebraic viewpoint, K-Theory, Volume 5 (1991), pp. 151-175
[12] Quantum homogeneous spaces with faithfully flat module structures, Israel J. Math., Volume 111 (1999), pp. 157-190
[13] Quantum spheres, Lett. Math. Phys., Volume 14 (1987), pp. 193-202
[14] Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci., Volume 23 (1987), pp. 117-181
Cité par Sources :
Commentaires - Politique