[Théorie de l'indice non commutative pour des sphères quantiques miroirs]
Nous introduisons et analysons un nouveau type de 2-sphères quantiques. Nous appliquons la théorie de l'indice pour les fibrés en droites non commutatifs sur ces sphères afin de déduire que les espaces lenticulaires quantiques sont des exemples d'extensions principales de -algèbres qui ne sont pas des produits croisés.
We introduce and analyse a new type of quantum 2-spheres. Then we apply index theory for noncommutative line bundles over these spheres to conclude that quantum lens spaces are non-crossed-product examples of principal extensions of -algebras.
Accepté le :
Publié le :
Piotr M. Hajac 1, 2 ; Rainer Matthes 2 ; Wojciech Szymański 3
@article{CRMATH_2006__343_11-12_731_0, author = {Piotr M. Hajac and Rainer Matthes and Wojciech Szyma\'nski}, title = {Noncommutative index theory for mirror quantum spheres}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--736}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.09.021}, language = {en}, }
TY - JOUR AU - Piotr M. Hajac AU - Rainer Matthes AU - Wojciech Szymański TI - Noncommutative index theory for mirror quantum spheres JO - Comptes Rendus. Mathématique PY - 2006 SP - 731 EP - 736 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.09.021 LA - en ID - CRMATH_2006__343_11-12_731_0 ER -
Piotr M. Hajac; Rainer Matthes; Wojciech Szymański. Noncommutative index theory for mirror quantum spheres. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 731-736. doi : 10.1016/j.crma.2006.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.021/
[1] The K-theory of Heegaard-type quantum 3-spheres, K-Theory, Volume 35 (2005), pp. 159-186
[2] The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 113-116
[3] Non-commutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[4] The garden of quantum spheres, Warsaw, 2001 (Banach Center Publ.), Volume vol. 61, Polish Acad. Sci., Warsaw (2003), pp. 37-48
[5] The spectral geometry of the equatorial Podleś sphere, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 819-822
[6] -Algebras by Example, Fields Institute Monographs, vol. 6, Amer. Math. Soc., Providence, RI, 1996
[7] A new characterisation of principal actions, J. Funct. Anal., Volume 173 (2000), pp. 49-60
[8] Bundles over quantum sphere and noncommutative index theorem, K-Theory, Volume 21 (2000), pp. 141-150
[9] Projective module description of the q-monopole, Comm. Math. Phys., Volume 206 (1999), pp. 247-264
[10] Chern numbers for two families of noncommutative Hopf fibrations, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 925-930
[11] A locally trivial quantum Hopf fibration, Algebras Rep. Theory, Volume 9 (2006), pp. 121-146
[12] Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys., Volume 232 (2002), pp. 157-188
[13] Quantum lens spaces and graph algebras, Pacific J. Math., Volume 211 (2003), pp. 249-263
[14] The primitive ideal space of the -algebras of infinite graphs, J. Math. Soc. Japan, Volume 56 (2004), pp. 45-64
[15] A two-parameter quantum deformation of the unit disc, J. Funct. Anal., Volume 115 (1993), pp. 1-23
[16] Noncommutative differential geometry on the quantum two sphere of Podleś. I: An algebraic viewpoint, K-Theory, Volume 5 (1991), pp. 151-175
[17] Noncommutative lens spaces, J. Math. Soc. Japan, Volume 44 (1992), pp. 13-41
[18] Quantum spheres, Lett. Math. Phys., Volume 14 (1987), pp. 193-202
[19] Quantization of the Poisson SU(2) and its Poisson homogeneous space—the 2-sphere, Comm. Math. Phys., Volume 135 (1991), pp. 217-232
[20] Quantum lens spaces and principal actions on graph -algebras, Warsaw, 2001 (Banach Center Publ.), Volume vol. 61, Polish Acad. Sci., Warsaw (2003), pp. 299-304
Cité par Sources :
Commentaires - Politique