Comptes Rendus
Analyse harmonique
Des équations de Dirac et de Schrödinger pour la transformation de Fourier
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 919-924.

Dyson a associé aux déterminants de Fredholm des noyaux de Dirichlet pairs (resp. impairs) une équation de Schrödinger sur un demi-axe et a employé les méthodes du scattering inverse de Gel'fand–Levitan et de Marchenko, en tandem, pour étudier l'asymptotique de ces déterminants. Nous avons proposé suite à notre mise-au-jour de l'opérateur conducteur de chercher à réaliser la transformation de Fourier elle-même comme un scattering, et nous obtenons ici dans ce but deux systèmes de Dirac sur l'axe réel tout entier et qui sont associés intrinsèquement, respectivement, aux transformations en cosinus et en sinus.

Dyson has associated with the Fredholm determinants of the even (resp. odd) Dirichlet kernels a Schrödinger equation on the half-axis and has used, in tandem, the Gel'fand–Levitan and Marchenko methods of inverse scattering theory to study the asymptotics of these determinants. We have proposed following our unearthing of the conductor operator to seek to realize the Fourier transform itself as a scattering, and we obtain here to this end two Dirac systems on the entire real axis which are intrinsically associated, respectively, to the cosine and to the sine transforms.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00223-1

Jean-François Burnol 1

1 Université Lille 1, UFR de mathématiques, cité scientifique M2, 59655 Villeneuve d'Ascq cedex, France
@article{CRMATH_2003__336_11_919_0,
     author = {Jean-Fran\c{c}ois Burnol},
     title = {Des \'equations de {Dirac} et de {Schr\"odinger} pour la transformation de {Fourier}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {919--924},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00223-1},
     language = {fr},
}
TY  - JOUR
AU  - Jean-François Burnol
TI  - Des équations de Dirac et de Schrödinger pour la transformation de Fourier
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 919
EP  - 924
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00223-1
LA  - fr
ID  - CRMATH_2003__336_11_919_0
ER  - 
%0 Journal Article
%A Jean-François Burnol
%T Des équations de Dirac et de Schrödinger pour la transformation de Fourier
%J Comptes Rendus. Mathématique
%D 2003
%P 919-924
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00223-1
%G fr
%F CRMATH_2003__336_11_919_0
Jean-François Burnol. Des équations de Dirac et de Schrödinger pour la transformation de Fourier. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 919-924. doi : 10.1016/S1631-073X(03)00223-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00223-1/

[1] L. de Branges Self-reciprocal functions, J. Math. Anal. Appl., Volume 9 (1964), pp. 433-457

[2] L. de Branges Espaces de Hilbert de Fonctions Entières, Masson, Paris, 1972

[3] J.-F. Burnol, The explicit formula and a propagator, 1998, 21 p. Disponible sur | arXiv

[4] J.-F. Burnol, The explicit formula and the conductor operator, 1999, 28 p. Disponible sur | arXiv

[5] J.-F. Burnol Sur les formules explicites I : analyse invariante, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000), pp. 423-428

[6] J.-F. Burnol Scattering on the p-adic field and a trace formula, Internet Math. Res. Notices, Volume 2000 (2000) no. 2, pp. 57-70

[7] J.-F. Burnol Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 201-206

[8] J.-F. Burnol, On Fourier and Zeta(s), Habilitationsschrift, Forum Mathematicum, 2001, à paraı̂tre

[9] J.-F. Burnol, Two complete and minimal systems associated with the zeros of the Riemann zeta function, 28 p. Soumis à une revue avec comité de lecture (Janvier 2003). Disponible sur | arXiv

[10] J.-F. Burnol Sur les « espaces de Sonine » associés par de Branges à la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 689-692

[11] J. des Cloizeaux; M.L. Mehta Asymptotic behavior of spacing distributions for the eigenvalues of random matrices, J. Math. Phys., Volume 14 (1973), pp. 1648-1650

[12] P. Deift; A.R. Its; X. Zhou A Riemann–Hilbert approach to asymptotic problems arising in the theory of the random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math., Volume 146 (1997), pp. 149-235

[13] H. Dym; H.P. McKean Gaussian processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York, 1976

[14] F. Dyson Fredholm determinants and inverse scattering problems, Comm. Math. Phys., Volume 47 (1976), pp. 171-183

[15] M. Jimbo; T. Miwa; Y. Môri; M. Sato Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D, Volume 1 (1980), pp. 80-158

[16] M.L. Mehta Random Matrices, Academic Press, San Diego, 1991

[17] C.A. Tracy; H. Widom Fredholm determinants, differential equations and matrix models, Comm. Math. Phys., Volume 163 (1994), pp. 33-72

[18] H. Widom The asymptotics of a continuous analogue of orthogonal polynomials, J. Approx. Theory, Volume 77 (1994), pp. 51-64

Cité par Sources :

Commentaires - Politique