Nous avons obtenu des formules explicites représentant les fonctions E(z) apparaissant dans la théorie des « espaces de Sonine » associés par de Branges à la transformation de Fourier.
We have obtained explicit formulae representing the functions E(z) arising in the theory of the “Sonine spaces” associated by de Branges to the Fourier transform.
Accepté le :
Publié le :
Jean-François Burnol 1
@article{CRMATH_2002__335_8_689_0, author = {Jean-Fran\c{c}ois Burnol}, title = {Sur les {\guillemotleft} espaces de {Sonine} {\guillemotright} associ\'es par {de~Branges} \`a la transformation de {Fourier}}, journal = {Comptes Rendus. Math\'ematique}, pages = {689--692}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02546-3}, language = {fr}, }
Jean-François Burnol. Sur les « espaces de Sonine » associés par de Branges à la transformation de Fourier. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 689-692. doi : 10.1016/S1631-073X(02)02546-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02546-3/
[1] Self-reciprocal functions, J. Math. Anal. Appl., Volume 9 (1964), pp. 433-457
[2] Espaces de Hilbert de Fonctions Entières, Masson, Paris, 1972
[3] Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001), pp. 201-206
[4] J.-F. Burnol, On Fourier and Zeta(s), Habilitationsschrift, math/0112254. Article soumis
[5] J.-F. Burnol, Co-Poisson intertwining: distribution and function theoretic aspects, en préparation
[6] Fourier Series and Integrals, Academic Press, 1972
[7] Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York, 1976
[8] Random Matrices, Academic Press, San Diego, 1991
[9] Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., Volume 25 (1983) no. 3, pp. 379-393
- Zeta zeros and prolate wave operators, Annals of Functional Analysis, Volume 15 (2024) no. 4 | DOI:10.1007/s43034-024-00388-z
- The UV prolate spectrum matches the zeros of zeta, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 22 | DOI:10.1073/pnas.2123174119
- An inverse problem for a class of lacunary canonical systems with diagonal Hamiltonian, Tohoku Mathematical Journal, Volume 74 (2022) no. 4 | DOI:10.2748/tmj.20210816
- Hamiltonians arising from L-functions in the Selberg class, Journal of Functional Analysis, Volume 281 (2021) no. 8, p. 109116 | DOI:10.1016/j.jfa.2021.109116
- An inverse problem for a class of canonical systems having Hamiltonians of determinant one, Journal of Functional Analysis, Volume 279 (2020) no. 12, p. 108699 | DOI:10.1016/j.jfa.2020.108699
- The Riemann zeta in terms of the dilogarithm, Journal of Number Theory, Volume 133 (2013) no. 1, p. 242 | DOI:10.1016/j.jnt.2012.06.002
- Orthonormal Sequences in L 2(R d ) and Time Frequency Localization, Journal of Fourier Analysis and Applications, Volume 16 (2010) no. 6, p. 983 | DOI:10.1007/s00041-009-9114-9
- Operators associated with soft and hard spectral edges from unitary ensembles, Journal of Mathematical Analysis and Applications, Volume 337 (2008) no. 1, p. 239 | DOI:10.1016/j.jmaa.2007.03.084
- A quantum mechanical model of the Riemann zeros, New Journal of Physics, Volume 10 (2008) no. 3, p. 033016 | DOI:10.1088/1367-2630/10/3/033016
- Hilbert Spaces of Entire Functions and Dirichlet L-Functions, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 365 | DOI:10.1007/978-3-540-31347-2_10
Cité par 10 documents. Sources : Crossref
Commentaires - Politique