[Le problème de Knaster et la géométrie des cubes en grande dimension]
Nous étudions des questions du type suivant : Soit
We study questions of the following type: Given positive semi-definite matrix
Accepté le :
Publié le :
Boris S. Kashin 1 ; Stanislaw J. Szarek 2, 3
@article{CRMATH_2003__336_11_931_0, author = {Boris S. Kashin and Stanislaw J. Szarek}, title = {The {Knaster} problem and the geometry of high-dimensional cubes}, journal = {Comptes Rendus. Math\'ematique}, pages = {931--936}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00226-7}, language = {en}, }
Boris S. Kashin; Stanislaw J. Szarek. The Knaster problem and the geometry of high-dimensional cubes. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 931-936. doi : 10.1016/S1631-073X(03)00226-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00226-7/
[1] Counterexamples to Knaster's conjecture, Topology, Volume 37 (1998) no. 2, pp. 401-405
[2] Real-valued mappings of spheres, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 957-959
[3] Factorization, tensor products, and bilinear forms in Banach space theory, Notes in Banach Spaces, University Texas Press, Austin, TX, 1980, pp. 182-305
[4] A proof that there exists a circumscribing cube around any bounded closed convex set in
[5] The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977), pp. 334-351 (in Russian)
[6] Problem 4, Colloq. Math., Volume 30 (1947), pp. 30-31
[7] Some properties of continuous mappings of spheres and problems in combinatorial geometry, Geometric Questions in the Theory of Functions and Sets, Kalinin. Gos. Univ, Kalinin, 1986, pp. 75-85 (in Russian)
[8] Relaxations of quadratic programs in operator theory and system analysis, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, pp. 365-392
[9] Sur les séries de fonctions orthogonales bornées dans leur ensembles, Mat. Sb., Volume 3 (1938) no. 45, pp. 103-120
[10] A few observations on the connections between local theory and some other fields, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1317, Springer-Verlag, Berlin, 1988, pp. 283-289
[11] Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin, 1975
[12] Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math., 60, American Mathematical Society, Providence, RI, 1986
[13] On Kashin's almost Euclidean orthogonal decomposition of ℓ1n, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Volume 26 (1978), pp. 691-694
[14] On the continuous function defined on a sphere, Osaka Math. J., Volume 2 (1950) no. 1, pp. 19-22
Cité par Sources :
Commentaires - Politique