Comptes Rendus
Geometry/Functional Analysis
The Knaster problem and the geometry of high-dimensional cubes
[Le problème de Knaster et la géométrie des cubes en grande dimension]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 931-936.

We study questions of the following type: Given positive semi-definite matrix 𝒢, does there exist a sequence of vectors in n whose Grammian equals to 𝒢 and which has some specified additional properties (typically related to the sup norm)? In particular, we show that the answer to the 1947 Knaster problem about real functions on spheres is negative for sufficiently large dimensions.

Nous étudions des questions du type suivant : Soit 𝒢 une matrice positive semi-définie, existe-t-il une suite de vecteurs dans n dont la matrice de Gram est égale à 𝒢 et qui possède certaines propriétés supplémentaires (typiquement liées à la norme sup) ? En particulier, nous montrons que la réponse au problème de Knaster datant de 1947 et concernant les fonctions réelles sur les sphères est négative en dimension suffisamment grande.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00226-7

Boris S. Kashin 1 ; Stanislaw J. Szarek 2, 3

1 Steklov Mathematical Institute, 8 Gubkina Street, 117966, GSP1, Moscow, Russia
2 Équipe d'analyse fonctionnelle, B.C. 186, Université Paris VI, 4, place Jussieu, 75252 Paris, France
3 Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106-7058, USA
@article{CRMATH_2003__336_11_931_0,
     author = {Boris S. Kashin and Stanislaw J. Szarek},
     title = {The {Knaster} problem and the geometry of high-dimensional cubes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {931--936},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00226-7},
     language = {en},
}
TY  - JOUR
AU  - Boris S. Kashin
AU  - Stanislaw J. Szarek
TI  - The Knaster problem and the geometry of high-dimensional cubes
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 931
EP  - 936
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00226-7
LA  - en
ID  - CRMATH_2003__336_11_931_0
ER  - 
%0 Journal Article
%A Boris S. Kashin
%A Stanislaw J. Szarek
%T The Knaster problem and the geometry of high-dimensional cubes
%J Comptes Rendus. Mathématique
%D 2003
%P 931-936
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00226-7
%G en
%F CRMATH_2003__336_11_931_0
Boris S. Kashin; Stanislaw J. Szarek. The Knaster problem and the geometry of high-dimensional cubes. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 931-936. doi : 10.1016/S1631-073X(03)00226-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00226-7/

[1] W. Chen Counterexamples to Knaster's conjecture, Topology, Volume 37 (1998) no. 2, pp. 401-405

[2] E.E. Floyd Real-valued mappings of spheres, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 957-959

[3] J.E. Gilbert; T.J. Leih Factorization, tensor products, and bilinear forms in Banach space theory, Notes in Banach Spaces, University Texas Press, Austin, TX, 1980, pp. 182-305

[4] S. Kakutani A proof that there exists a circumscribing cube around any bounded closed convex set in 3, Ann. of Math., Volume 43 (1942), pp. 739-741

[5] B.S. Kashin The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977), pp. 334-351 (in Russian)

[6] B. Knaster Problem 4, Colloq. Math., Volume 30 (1947), pp. 30-31

[7] V.V. Makeev Some properties of continuous mappings of spheres and problems in combinatorial geometry, Geometric Questions in the Theory of Functions and Sets, Kalinin. Gos. Univ, Kalinin, 1986, pp. 75-85 (in Russian)

[8] A. Megretski Relaxations of quadratic programs in operator theory and system analysis, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, pp. 365-392

[9] D. Menshoff Sur les séries de fonctions orthogonales bornées dans leur ensembles, Mat. Sb., Volume 3 (1938) no. 45, pp. 103-120

[10] V.D. Milman A few observations on the connections between local theory and some other fields, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1317, Springer-Verlag, Berlin, 1988, pp. 283-289

[11] A.M. Olevskiı̌ Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin, 1975

[12] G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math., 60, American Mathematical Society, Providence, RI, 1986

[13] S.J. Szarek On Kashin's almost Euclidean orthogonal decomposition of ℓ1n, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Volume 26 (1978), pp. 691-694

[14] H. Yamabe; Z. Yujobo On the continuous function defined on a sphere, Osaka Math. J., Volume 2 (1950) no. 1, pp. 19-22

  • V. D. Milman Essay on Kashin's remarkable 1977 decomposition theorem, Proceedings of the Steklov Institute of Mathematics, Volume 319 (2022), pp. 200-208 | DOI:10.1134/s0081543822050145 | Zbl:1519.46007
  • Vitali Davidovich Milman Эссе о замечательной теореме Кашина 1977 г. о разложении, Труды Математического института имени В. А. Стеклова, Volume 319 (2022), p. 213 | DOI:10.4213/tm4251
  • R. N. Karasev A note on Makeev's conjectures, Journal of Mathematical Sciences (New York), Volume 212 (2016) no. 5, pp. 521-526 | DOI:10.1007/s10958-016-2679-3 | Zbl:1347.52006
  • Daniel J. Fresen Explicit Euclidean embeddings in permutation invariant normed spaces, Advances in Mathematics, Volume 266 (2014), pp. 1-16 | DOI:10.1016/j.aim.2014.07.017 | Zbl:1314.46016
  • Boris Bukh; Roman N. Karasev Suborbits in Knaster's problem, Bulletin of the London Mathematical Society, Volume 46 (2014) no. 2, pp. 269-278 | DOI:10.1112/blms/bdt088 | Zbl:1300.55003
  • Ron Blei The Grothendieck inequality revisited, Memoirs of the American Mathematical Society, 1093, Providence, RI: American Mathematical Society (AMS), 2014 | DOI:10.1090/memo/1093 | Zbl:1319.46019
  • Gilles Pisier Grothendieck's theorem, past and present, Bulletin of the American Mathematical Society. New Series, Volume 49 (2012) no. 2, pp. 237-323 | DOI:10.1090/s0273-0979-2011-01348-9 | Zbl:1244.46006
  • Yuhong Liu Some mapping theorems for continuous functions defined on the sphere, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 4, pp. 1881-1886 | DOI:10.1016/j.na.2011.09.038 | Zbl:1244.55001
  • Vladimir L. Dol'nikov; Roman N. Karasev Dvoretzky type theorems for multivariate polynomials and sections of convex bodies, Geometric and Functional Analysis. GAFA, Volume 21 (2011) no. 2, pp. 301-318 | DOI:10.1007/s00039-011-0109-8 | Zbl:1232.46043
  • Oleg V Besov; Sergei V Bochkarev; Boris I Golubov; Andrei A Gonchar; Mikhail I Dyachenko; Valerii V Kozlov; Sergei V Konyagin; Yuri V Malykhin; Sergei M Nikol'skii; Mikhail K Potapov; Victor A Sadovnichii; Sergei A Telyakovskii Boris Sergeevich Kashin (on his 60th birthday), Russian Mathematical Surveys, Volume 66 (2011) no. 4, p. 825 | DOI:10.1070/rm2011v066n04abeh004761
  • Олег Владимирович Бесов; Oleg Vladimirovich Besov; Сергей Викторович Бочкарев; Sergei Viktorovich Bochkarev; Борис Иванович Голубов; Boris Ivanovich Golubov; Андрей Александрович Гончар; Andrei Aleksandrovich Gonchar; Михаил Иванович Дьяченко; Mikhail Ivanovich Dyachenko; Валерий Васильевич Козлов; Valerii Vasil'evich Kozlov; Сергей Владимирович Конягин; Sergei Vladimirovich Konyagin; Юрий Вячеславович Малыхин; Yuri Viatcheslavovich Malykhin; Сергей Михайлович Никольский; Sergei Mikhailovich Nikol'skii; Михaил Констaнтинович Потапов; Mikhail Konstantinovich Potapov; Виктор Антонович Садовничий; Victor Antonovich Sadovnichii; Сергей Александрович Теляковский; Sergei Aleksandrovich Telyakovskii Борис Сергеевич Кашин (к 60-летию со дня рождения), Успехи математических наук, Volume 66 (2011) no. 4, p. 189 | DOI:10.4213/rm9434
  • R. N. Karasev Knaster's problem for (Z2)k-symmetric subsets of the sphere S2k1, Discrete Computational Geometry, Volume 44 (2010) no. 2, pp. 429-438 | DOI:10.1007/s00454-009-9215-x | Zbl:1200.55006
  • Yuhong Liu On a property of functions on the sphere and its application, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3376-3381 | DOI:10.1016/j.na.2010.07.019 | Zbl:1202.55001
  • R. N. Karasev; A. Yu. Volovikov Knaster's problem for almost (Zp)k-orbits, Topology and its Applications, Volume 157 (2010) no. 5, pp. 941-945 | DOI:10.1016/j.topol.2009.12.010 | Zbl:1196.55002
  • Роман Николаевич Карасeв; Roman Nikolaevich Karasev Топологические методы в комбинаторной геометрии, Успехи математических наук, Volume 63 (2008) no. 6, p. 39 | DOI:10.4213/rm9244
  • V. V. Makeev Geometry of finite-dimensional normed spaces and continuous functions on the Euclidean sphere, Journal of Mathematical Sciences (New York), Volume 140 (2007) no. 4, pp. 558-563 | DOI:10.1007/s10958-007-0438-1 | Zbl:1151.46304
  • V. V. Makeev Inscribed and circumscribed polyhedra for a convex body and continuous functions on a sphere in Euclidean space, St. Petersburg Mathematical Journal, Volume 18 (2007) no. 6, pp. 997-1009 | DOI:10.1090/s1061-0022-07-00979-x | Zbl:1136.52002
  • Aicke Hinrichs; Christian Richter The Knaster problem: more counterexamples, Israel Journal of Mathematics, Volume 145 (2005), pp. 311-324 | DOI:10.1007/bf02786696 | Zbl:1066.55001

Cité par 18 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: