[Bases généralisées de Riesz pour les systèmes de type neutre]
On étudie une équation différentielle fonctionnelle de type neutre. Nous considérons le modèle opérationnel dans l'espace de Hilbert et montrons qu'il existe dans cet espace une base de Riesz de sous-espaces de dimensions finies invariants par l'opérateur générateur infinitésimal du système. Nous donnons également un exemple précisant qu'il n'existe pas de base de Riesz de sous-espaces propres.
The functional differential equation of neutral type is studied. We consider the corresponding operator model in Hilbert space and prove that there exists a sequence of invariant finite-dimensional subspaces which constitute a Riesz basis in M2. We also give an example emphasizing that the generalized eigenspaces do not form a Riesz basis.
Accepté le :
Publié le :
Rabah Rabah 1 ; Grigory M. Sklyar 2 ; Alexander V. Rezounenko 3
@article{CRMATH_2003__337_1_19_0, author = {Rabah Rabah and Grigory M. Sklyar and Alexander V. Rezounenko}, title = {Generalized {Riesz} basis property in the analysis of neutral type systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {19--24}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00251-6}, language = {en}, }
TY - JOUR AU - Rabah Rabah AU - Grigory M. Sklyar AU - Alexander V. Rezounenko TI - Generalized Riesz basis property in the analysis of neutral type systems JO - Comptes Rendus. Mathématique PY - 2003 SP - 19 EP - 24 VL - 337 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(03)00251-6 LA - en ID - CRMATH_2003__337_1_19_0 ER -
Rabah Rabah; Grigory M. Sklyar; Alexander V. Rezounenko. Generalized Riesz basis property in the analysis of neutral type systems. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 19-24. doi : 10.1016/S1631-073X(03)00251-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00251-6/
[1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert space, Dover, New York, NY. Transl. from the Russian. Repr. of the 1961 and 1963 transl
[2] Differential-difference equations, Math. Sci. Engrg., 6, Academic Press, New York, 1963 (XVI)
[3] On the asymptotic behavior of solutions of differential-difference equations of neutral type, J. Differential Equations, Volume 7 (1970), pp. 175-188
[4] An Introduction to Infinite-Dimensional Linear Systems Theory, Texts Appl. Math., 21, Springer-Verlag, New York, 1995
[5] Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, Interscience, 1963
[6] Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, 18, American Mathematical Society, Providence, RI, 1969 (XV, 378 p)
[7] Theory of Functional Differential Equations, Springer-Verlag, New York, 1993
[8] Perturbation Theory for Linear Operators, Springer-Verlag, 1980
[9] Introduction to the Theory and Applications of Functional Differential Equations, Math. Appl., 463, Kluwer Academic, Dordrecht, 1999
[10] On stabilization by state feedback for neutral differential equations, IEEE Trans. Automatic Control, Volume AC-28 (1983) no. 5, pp. 615-618
[11] Stabilization of neutral functional differential equations, J. Optimization Theory and Appl., Volume 20 (1976) no. 2, pp. 191-204
[12] R. Rabah, G.M. Sklyar, On a class of strongly stabilizable systems of neutral type, submitted
[13] A new model for neutral delay-differential systems, Internat. J. Control, Volume 43 (1986) no. 2, pp. 465-471
[14] Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems, SIAM J. Control Optim., Volume 27 (1989) no. 1, pp. 217-234
Cité par Sources :
Commentaires - Politique