Comptes Rendus
Contrôle optimal
Propriétés génériques des trajectoires singulières
Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 49-52.

Nous énonçons des résultats de généricité des trajectoires singulières en géométrie sous-riemannienne : génériquement (au sens de la topologie de Whitney) toute trajectoire singulière est d'ordre minimal et de corang 1, et en particulier n'est pas de Goh si le rang de la distribution est supérieur ou égal à 3. Nous étendons ces résultats aux systèmes affines en le contrôle.

We give genericity results for singular trajectories in sub-Riemannian geometry: generically (in the sense of the Whitney topology), every singular trajectory is of minimal order and of corank 1 and in particular is not of Goh type if the rank of the distribution is greater or equal to 3. We extend these results to control-affine systems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00252-8

Yacine Chitour 1 ; Frédéric Jean 2 ; Emmanuel Trélat 1

1 Univ. Paris-Sud, Labo. AN-EDP, Math., UMR 8628, bat. 425, 91405 Orsay cedex, France
2 ENSTA, UMA, 32, bd Victor, 75015 Paris, France
@article{CRMATH_2003__337_1_49_0,
     author = {Yacine Chitour and Fr\'ed\'eric Jean and Emmanuel Tr\'elat},
     title = {Propri\'et\'es g\'en\'eriques des trajectoires singuli\`eres},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {49--52},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00252-8},
     language = {fr},
}
TY  - JOUR
AU  - Yacine Chitour
AU  - Frédéric Jean
AU  - Emmanuel Trélat
TI  - Propriétés génériques des trajectoires singulières
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 49
EP  - 52
VL  - 337
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00252-8
LA  - fr
ID  - CRMATH_2003__337_1_49_0
ER  - 
%0 Journal Article
%A Yacine Chitour
%A Frédéric Jean
%A Emmanuel Trélat
%T Propriétés génériques des trajectoires singulières
%J Comptes Rendus. Mathématique
%D 2003
%P 49-52
%V 337
%N 1
%I Elsevier
%R 10.1016/S1631-073X(03)00252-8
%G fr
%F CRMATH_2003__337_1_49_0
Yacine Chitour; Frédéric Jean; Emmanuel Trélat. Propriétés génériques des trajectoires singulières. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 49-52. doi : 10.1016/S1631-073X(03)00252-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00252-8/

[1] A. Agrachev Compactness for SR minimizers and subanalyticity, Rend. Sem. Mat. Torino, Volume 56 (1998)

[2] A. Agrachev; J.P. Gauthier On subanalyticity of Carnot–Carathéodory distances, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 18 (2001) no. 3

[3] A. Agrachev; A. Sarychev Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996)

[4] A. Bellaïche Tangent Space in Sub-Riemannian Geometry, Sub-Riemannian Geometry, Birkhäuser, 1996

[5] B. Bonnard, H. Heutte, La propriété de stricte anormalité est générique, Preprint Univ. Bourgogne 77, 1995

[6] B. Bonnard; I. Kupka Generic properties of singular trajectories, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997) no. 2

[7] R.L. Bryant; L. Hsu Rigidity of integral curves of rank 2 distributions, Invent. Math., Volume 114 (1993)

[8] R.M. Hardt Stratification of real analytic mappings and images, Invent. Math., Volume 28 (1975)

[9] H. Heutte, Propriétés génériques des extrémales singulières dans le cas multi-entrées, Preprint Univ. Bourgogne 67, 1995

[10] H. Hironaka Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Tokyo, 1973

[11] W.S. Liu; H.J. Sussmann Shortest paths for sub-Riemannian metrics of rank two distributions, Mem. Amer. Math. Soc., Volume 564 (1995), p. 118

[12] R. Montgomery A survey of singular curves in sub-Riemannian geometry, J. Dyn. Cont. Syst., Volume 1 (1995) no. 1

[13] L. Pontryagin et al. Théorie mathématique des processus optimaux, Mir, Moscou, 1974

[14] E. Trélat Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dyn. Cont. Syst., Volume 6 (2000) no. 4

[15] E. Trélat, Étude asymptotique et transcendance de la fonction valeur en contrôle optimal ; catégorie log-exp en géométrie sous-riemannienne dans le cas Martinet, Thèse, Univ. de Bourgogne, 2000

Cité par Sources :

Commentaires - Politique