Comptes Rendus
Functional Analysis
A class of Banach spaces with no unconditional basic sequence
[Une classe d'espace de Banach sans suite basique inconditionnelle]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 43-48.

Nous construisons un espace de Banach réflexif Xω1 ayant une base transfinie de longueur ω1 et n'admettant aucune suite basique inconditionnelle. De plus, tout opérateur borné d'un sous-espace de Xω1 dans cet espace est somme d'un opérateur diagonal très simple et d'un opérateur strictement singulier.

We give a construction of a reflexive Banach space Xω1 with a transfinite basis of length ω1 and with no unconditional basic sequence. In addition every bounded operator from a subspace of Xω1 into the space Xω1 is a sum of a simple diagonal operator and a strictly singular one.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00272-3

Spiros A. Argyros 1 ; Jordi Lopez-Abad 2 ; Stevo Todorcevic 3

1 Department of Mathematics, National Technical University of Athens, Zogratou Campus, 15780 Athens, Greece
2 Équipe de logique mathématique, Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
3 CNRS–Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
@article{CRMATH_2003__337_1_43_0,
     author = {Spiros A. Argyros and Jordi Lopez-Abad and Stevo Todorcevic},
     title = {A class of {Banach} spaces with no unconditional basic sequence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {43--48},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00272-3},
     language = {en},
}
TY  - JOUR
AU  - Spiros A. Argyros
AU  - Jordi Lopez-Abad
AU  - Stevo Todorcevic
TI  - A class of Banach spaces with no unconditional basic sequence
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 43
EP  - 48
VL  - 337
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00272-3
LA  - en
ID  - CRMATH_2003__337_1_43_0
ER  - 
%0 Journal Article
%A Spiros A. Argyros
%A Jordi Lopez-Abad
%A Stevo Todorcevic
%T A class of Banach spaces with no unconditional basic sequence
%J Comptes Rendus. Mathématique
%D 2003
%P 43-48
%V 337
%N 1
%I Elsevier
%R 10.1016/S1631-073X(03)00272-3
%G en
%F CRMATH_2003__337_1_43_0
Spiros A. Argyros; Jordi Lopez-Abad; Stevo Todorcevic. A class of Banach spaces with no unconditional basic sequence. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 43-48. doi : 10.1016/S1631-073X(03)00272-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00272-3/

[1] S.A. Argyros; I. Deliyanni Examples of asymptotic ℓ1 Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 973-995

[2] S.A. Argyros, A. Manoussakis, An indecomposable and unconditionally saturated Banach space, Studia Math., to appear

[3] S.A. Argyros, A. Tolias, Indecomposability and unconditionality in duality, Preprint

[4] S. Bellenot; R. Haydon; E. Odell Quasi reflexive and tree spaces constructed in the spirit of R.C. James, Contemp. Math., Volume 85 (1989), pp. 19-43

[5] G.A. Edgar A long James space, Proc. Conf. on Measure Theory, Lecture Notes in Math., 794, 1980, pp. 31-37

[6] W.T. Gowers A solution to Banach's hyperplane problem, Bull. London Math. Soc., Volume 28 (1996), pp. 297-304

[7] W.T. Gowers; B. Maurey The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993), pp. 851-874

[8] J. Lindenstrauss On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 967-970

[9] Th. Schlumprecht An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991), pp. 81-95

[10] S. Todorcevic Partitioning pairs of countable ordinals, Acta Math., Volume 159 (1987), pp. 261-294

[11] S. Todorcevic, Coherent sequences, in: Handbook of Set Theory, to appear

Cité par Sources :

Commentaires - Politique