[Une classe d'espace de Banach sans suite basique inconditionnelle]
Nous construisons un espace de Banach réflexif Xω1 ayant une base transfinie de longueur ω1 et n'admettant aucune suite basique inconditionnelle. De plus, tout opérateur borné d'un sous-espace de Xω1 dans cet espace est somme d'un opérateur diagonal très simple et d'un opérateur strictement singulier.
We give a construction of a reflexive Banach space Xω1 with a transfinite basis of length ω1 and with no unconditional basic sequence. In addition every bounded operator from a subspace of Xω1 into the space Xω1 is a sum of a simple diagonal operator and a strictly singular one.
Accepté le :
Publié le :
Spiros A. Argyros 1 ; Jordi Lopez-Abad 2 ; Stevo Todorcevic 3
@article{CRMATH_2003__337_1_43_0, author = {Spiros A. Argyros and Jordi Lopez-Abad and Stevo Todorcevic}, title = {A class of {Banach} spaces with no unconditional basic sequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {43--48}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00272-3}, language = {en}, }
TY - JOUR AU - Spiros A. Argyros AU - Jordi Lopez-Abad AU - Stevo Todorcevic TI - A class of Banach spaces with no unconditional basic sequence JO - Comptes Rendus. Mathématique PY - 2003 SP - 43 EP - 48 VL - 337 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(03)00272-3 LA - en ID - CRMATH_2003__337_1_43_0 ER -
Spiros A. Argyros; Jordi Lopez-Abad; Stevo Todorcevic. A class of Banach spaces with no unconditional basic sequence. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 43-48. doi : 10.1016/S1631-073X(03)00272-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00272-3/
[1] Examples of asymptotic ℓ1 Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 973-995
[2] S.A. Argyros, A. Manoussakis, An indecomposable and unconditionally saturated Banach space, Studia Math., to appear
[3] S.A. Argyros, A. Tolias, Indecomposability and unconditionality in duality, Preprint
[4] Quasi reflexive and tree spaces constructed in the spirit of R.C. James, Contemp. Math., Volume 85 (1989), pp. 19-43
[5] A long James space, Proc. Conf. on Measure Theory, Lecture Notes in Math., 794, 1980, pp. 31-37
[6] A solution to Banach's hyperplane problem, Bull. London Math. Soc., Volume 28 (1996), pp. 297-304
[7] The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993), pp. 851-874
[8] On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 967-970
[9] An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991), pp. 81-95
[10] Partitioning pairs of countable ordinals, Acta Math., Volume 159 (1987), pp. 261-294
[11] S. Todorcevic, Coherent sequences, in: Handbook of Set Theory, to appear
Cité par Sources :
Commentaires - Politique