[Actions du cercle et
On établit un théorème d'indice S1-équivariant pour les opérateurs de Dirac sur des
We establish an S1-equivariant index theorem for Dirac operators on
Accepté le :
Publié le :
Weiping Zhang 1
@article{CRMATH_2003__337_1_57_0, author = {Weiping Zhang}, title = {Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {57--60}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00279-6}, language = {en}, }
Weiping Zhang. Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 57-60. doi : 10.1016/S1631-073X(03)00279-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00279-6/
[1] Spin manifolds and groups actions (A. Haefliger; R. Narasimhan, eds.), Essays on Topology and Related Topics, Mémoirée dédié à Georges de Rham, Springer-Verlag, 1970, pp. 18-28
[2] Spectral asymmetry and Riemannian geometry I, Proc. Cambridge Philos. Soc., Volume 77 (1975), pp. 43-69
[3] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[4] Real embeddings and eta invariant, Math. Ann., Volume 295 (1993), pp. 661-684
[5] Real embeddings and the Atiyah–Patodi–Singer index theorem for Dirac operators, Asian J. Math., Volume 4 (2000), pp. 775-794
[6]
[7] A mod k index theorem, Invent. Math., Volume 107 (1992), pp. 283-299
[8] Rigidity and vanishing theorems in K-theory, Comm. Anal. Geom., Volume 11 (2003), pp. 121-180
[9] Quantization formula for symplectic manifolds with boundary, Geom. Funct. Anal., Volume 9 (1999), pp. 596-640
[10] Fermion quantum numbers in Kaluza–Klein theory (R. Jackiw et al., eds.), Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field theory and the Fundamental Problems of Physics, MIT Press, 1985, pp. 227-277
Cité par Sources :
Commentaires - Politique