[Surfaces cubiques réelles et géométrie hyperbolique réelle]
The moduli space of stable real cubic surfaces is the quotient of real hyperbolic four-space by a discrete, nonarithmetic group. The volume of the moduli space is 37π2/1080 in the metric of constant curvature −1. Each of the five connected components of the moduli space can be described as the quotient of real hyperbolic four-space by a specific arithmetic group. We compute the volumes of these components.
L'espace des modules des surfaces cubiques stables et réelles est le quotient de l'espace hyperbolique réel de dimension quatre par un groupe non-arithmétique discret. Le volume de l'espace des modules est 37π2/1080 dans la métrique de courbure constante −1. Chacune des composantes connexes de l'espace des modules peut être décrite comme le quotient de l'espace hyperbolique réel de dimension quatre par un groupe arithmétique spécifique. Nous calculons le volume des composantes.
Accepté le :
Publié le :
Daniel Allcock 1 ; James A. Carlson 2 ; Domingo Toledo 2
@article{CRMATH_2003__337_3_185_0, author = {Daniel Allcock and James A. Carlson and Domingo Toledo}, title = {Real cubic surfaces and real hyperbolic geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--188}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00287-5}, language = {en}, }
Daniel Allcock; James A. Carlson; Domingo Toledo. Real cubic surfaces and real hyperbolic geometry. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 185-188. doi : 10.1016/S1631-073X(03)00287-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00287-5/
[1] Complex hyperbolic structure for moduli of cubic surfaces, C. R. Acad. Sci. Paris, Ser. I, Volume 326 (1998), pp. 49-54 | arXiv
[2] The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom., Volume 11 (2002), pp. 659-724 | arXiv
[3] Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES, Volume 63 (1986), pp. 5-89
[4] Non-arithmetic groups in Lobachevsky space, Publ. Math. IHES, Volume 66 (1988), pp. 93-103
[5] The Non-Singular Cubic Surfaces, Oxford, 1942
[6] Some arithmetical discrete groups in Lobacevskii spaces, Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford, 1975, pp. 328-348
[7] A hyperbolic structure on the real locus of the moduli space of marked cubic surfaces, Topology, Volume 40 (2001), pp. 469-473
- On the deformation chirality of real cubic fourfolds, Compositio Mathematica, Volume 145 (2009) no. 5, p. 1277 | DOI:10.1112/s0010437x09004126
- Non-Arithmetic Uniformization of Some Real Moduli Spaces, Geometriae Dedicata, Volume 122 (2007) no. 1, p. 159 | DOI:10.1007/s10711-005-9039-7
- Lagrangian submanifolds in affine symplectic geometry, Differential Geometry and its Applications, Volume 24 (2006) no. 6, p. 670 | DOI:10.1016/j.difgeo.2006.04.003
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier