[Bifurcation et analyse asymptotique pour l'équation de Lane–Emden–Fowler]
On considère l'équation de Lane–Emden–Fowler −Δu=λf(u)+a(x)g(u) dans
We are concerned with the Lane–Emden–Fowler equation −Δu=λf(u)+a(x)g(u) in
Accepté le :
Publié le :
Marius Ghergu 1 ; Vicenţiu D. Rădulescu 1
@article{CRMATH_2003__337_4_259_0, author = {Marius Ghergu and Vicen\c{t}iu D. R\u{a}dulescu}, title = {Bifurcation and asymptotics for the {Lane{\textendash}Emden{\textendash}Fowler} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {259--264}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00335-2}, language = {en}, }
Marius Ghergu; Vicenţiu D. Rădulescu. Bifurcation and asymptotics for the Lane–Emden–Fowler equation. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 259-264. doi : 10.1016/S1631-073X(03)00335-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00335-2/
[1] Existence and uniqueness of blow-up solutions for a class of logistic equations, Comm. Contemp. Math., Volume 4 (2002), pp. 559-586
[2] Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 447-452
[3] M. Ghergu, V. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, in press
[4] Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993), pp. 1021-1029
[5] The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983
[6] On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., Volume 3 (1991), pp. 720-730
[7] The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal., Volume 26 (1996), pp. 857-875
[8] On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, Volume 128 (1998), pp. 1389-1401
Cité par Sources :
Commentaires - Politique