We show that if , is a bounded Lipschitz domain and is a sequence of nonnegative radial functions weakly converging to δ0 then there exist C>0 and n0⩾1 such that
Soit , un domaine lipschitzien borné. Étant donnée une suite de fonctions radiales positives qui converge vers la masse de Dirac δ0 on montre qu'il existe C>0 et n0⩾1 tels que
Accepted:
Published online:
Augusto C. Ponce 1, 2
@article{CRMATH_2003__337_4_253_0, author = {Augusto C. Ponce}, title = {A variant of {Poincar\'e's} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--257}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00313-3}, language = {en}, }
Augusto C. Ponce. A variant of Poincaré's inequality. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 253-257. doi : 10.1016/S1631-073X(03)00313-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00313-3/
[1] J. Bourgain, H. Brezis, personal communication
[2] Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439-455 (A volume in honour of A. Benssoussan's 60th birthday)
[3] Limiting embedding theorems for Ws,p when s↑1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 (Dedicated to the memory of Thomas H. Wolff)
[4] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, in press
[5] How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002), pp. 59-74 (in Russian). English version: Russian Math. Surveys, 57, 2002, pp. 693-708 Volume in honor of M. Vishik
[6] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238 (Erratum J. Funct. Anal., 201, 2003, pp. 298-300)
[7] A.C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., in press
Cited by Sources:
Comments - Policy