Récemment, des modèles Ginzburg–Landau avec spineur ont été développés afin de tenir compte des effets ferromagnétiques et antiferromagnétiques observés dans les supraconducteurs à haute temperature ainsi que dans les condensats de Bose–Einstein. Nous montrons que les minimiseurs ont de nouveaux type de vortex ayant des degrés fractionnaires et un spin non-nul au coeur.
Recent papers in the physics literature have introduced spin-coupled (or spinor) Ginzburg–Landau models for complex vector-valued order parameters in order to account for ferromagnetic or antiferromagnetic effects in high-temperature superconductors and in optically confined Bose–Einstein condensates. In this Note we observe that such models can lead to new types of vortices, with fractional degree and non-trivial core structure.
Accepté le :
Publié le :
Stan Alama 1 ; Lia Bronsard 1
@article{CRMATH_2003__337_4_243_0, author = {Stan Alama and Lia Bronsard}, title = {Des vortex fractionnaires pour un mod\`ele {Ginzburg{\textendash}Landau} spineur}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--247}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00342-X}, language = {fr}, }
Stan Alama; Lia Bronsard. Des vortex fractionnaires pour un modèle Ginzburg–Landau spineur. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 243-247. doi : 10.1016/S1631-073X(03)00342-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00342-X/
[1] S. Alama, L. Bronsard, Half-integer vortices in superconductors with antiferromagnetic interactions, in preparation
[2] S. Alama, L. Bronsard, Vortices and the lower critical field for a Ginzburg–Landau model of superconductors with ferromagnetic interactions, Prépublication, 2003
[3] S. Alama, L. Bronsard, On the second critical field for a Ginzburg–Landau model with ferromagnetic interactions, Prépublication, 2003
[4] Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994
[5] Axisymmetric vortices in spinor Bose–Einstein condensates under rotation, Phys. Rev. A, Volume 66 (2002), p. 023602
[6] Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors, Phys. Rev. B, Volume 58 (1998), pp. 9354-9364
[7] Lower bounds for the energy of unit vector fields and applications, J. Func. Anal., Volume 152 (1998), pp. 379-403
[8] L∞ approximation for minimizers of the Ginzburg–Landau functional, C. R. Acad. Sci. Paris, Sér. I, Volume 321 (1995), pp. 705-710
- Extinction phenomenon for spinor Ginzburg-Landau equations in three dimensions, Applied Mathematics and Computation, Volume 256 (2015), pp. 786-807 | DOI:10.1016/j.amc.2015.01.064 | Zbl:1338.82074
- Strichartz estimates for wave equation with inverse square potential, Communications in Contemporary Mathematics, Volume 15 (2013) no. 6, p. 29 (Id/No 1350026) | DOI:10.1142/s0219199713500260 | Zbl:1284.35357
- Bose-Einstein condensates with non-classical vortex, Acta Applicandae Mathematicae, Volume 110 (2010) no. 3, pp. 1137-1152 | DOI:10.1007/s10440-009-9498-1 | Zbl:1190.35209
- The spinor Ginzburg-Landau model in dimension three, Applied Mathematics and Computation, Volume 207 (2009) no. 2, pp. 448-461 | DOI:10.1016/j.amc.2008.10.060 | Zbl:1157.82015
- On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, Journal of Functional Analysis, Volume 256 (2009) no. 4, pp. 1118-1136 | DOI:10.1016/j.jfa.2008.10.021 | Zbl:1159.35070
- Spinor Ginzburg-Landau equation and mean curvature flow, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 5-6, pp. 2053-2086 | DOI:10.1016/j.na.2009.01.042 | Zbl:1178.35072
- Fractional degree vortices for a spinor Ginzburg-Landau model, Communications in Contemporary Mathematics, Volume 8 (2006) no. 3, pp. 355-380 | DOI:10.1142/s0219199706002143 | Zbl:1154.58308
Cité par 7 documents. Sources : zbMATH
Commentaires - Politique