Comptes Rendus
Équations aux dérivées partielles
Des vortex fractionnaires pour un modèle Ginzburg–Landau spineur
Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 243-247.

Récemment, des modèles Ginzburg–Landau avec spineur ont été développés afin de tenir compte des effets ferromagnétiques et antiferromagnétiques observés dans les supraconducteurs à haute temperature ainsi que dans les condensats de Bose–Einstein. Nous montrons que les minimiseurs ont de nouveaux type de vortex ayant des degrés fractionnaires et un spin non-nul au coeur.

Recent papers in the physics literature have introduced spin-coupled (or spinor) Ginzburg–Landau models for complex vector-valued order parameters in order to account for ferromagnetic or antiferromagnetic effects in high-temperature superconductors and in optically confined Bose–Einstein condensates. In this Note we observe that such models can lead to new types of vortices, with fractional degree and non-trivial core structure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00342-X

Stan Alama 1 ; Lia Bronsard 1

1 Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
@article{CRMATH_2003__337_4_243_0,
     author = {Stan Alama and Lia Bronsard},
     title = {Des vortex fractionnaires pour un mod\`ele {Ginzburg{\textendash}Landau} spineur},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--247},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00342-X},
     language = {fr},
}
TY  - JOUR
AU  - Stan Alama
AU  - Lia Bronsard
TI  - Des vortex fractionnaires pour un modèle Ginzburg–Landau spineur
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 243
EP  - 247
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00342-X
LA  - fr
ID  - CRMATH_2003__337_4_243_0
ER  - 
%0 Journal Article
%A Stan Alama
%A Lia Bronsard
%T Des vortex fractionnaires pour un modèle Ginzburg–Landau spineur
%J Comptes Rendus. Mathématique
%D 2003
%P 243-247
%V 337
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00342-X
%G fr
%F CRMATH_2003__337_4_243_0
Stan Alama; Lia Bronsard. Des vortex fractionnaires pour un modèle Ginzburg–Landau spineur. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 243-247. doi : 10.1016/S1631-073X(03)00342-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00342-X/

[1] S. Alama, L. Bronsard, Half-integer vortices in superconductors with antiferromagnetic interactions, in preparation

[2] S. Alama, L. Bronsard, Vortices and the lower critical field for a Ginzburg–Landau model of superconductors with ferromagnetic interactions, Prépublication, 2003

[3] S. Alama, L. Bronsard, On the second critical field for a Ginzburg–Landau model with ferromagnetic interactions, Prépublication, 2003

[4] F. Bethuel; H. Brezis; F. Hélein Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994

[5] T. Isoshima; K. Machida Axisymmetric vortices in spinor Bose–Einstein condensates under rotation, Phys. Rev. A, Volume 66 (2002), p. 023602

[6] A. Knigavko; B. Rosenstein Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors, Phys. Rev. B, Volume 58 (1998), pp. 9354-9364

[7] E. Sandier Lower bounds for the energy of unit vector fields and applications, J. Func. Anal., Volume 152 (1998), pp. 379-403

[8] I. Shafrir L approximation for minimizers of the Ginzburg–Landau functional, C. R. Acad. Sci. Paris, Sér. I, Volume 321 (1995), pp. 705-710

  • Kwang Ik Kim; Zuhan Liu Extinction phenomenon for spinor Ginzburg-Landau equations in three dimensions, Applied Mathematics and Computation, Volume 256 (2015), pp. 786-807 | DOI:10.1016/j.amc.2015.01.064 | Zbl:1338.82074
  • Changxing Miao; Junyong Zhang; Jiqiang Zheng Strichartz estimates for wave equation with inverse square potential, Communications in Contemporary Mathematics, Volume 15 (2013) no. 6, p. 29 (Id/No 1350026) | DOI:10.1142/s0219199713500260 | Zbl:1284.35357
  • Kwang Ik Kim; Zuhan Liu Bose-Einstein condensates with non-classical vortex, Acta Applicandae Mathematicae, Volume 110 (2010) no. 3, pp. 1137-1152 | DOI:10.1007/s10440-009-9498-1 | Zbl:1190.35209
  • Zuhan Liu; Ling Zhou The spinor Ginzburg-Landau model in dimension three, Applied Mathematics and Computation, Volume 207 (2009) no. 2, pp. 448-461 | DOI:10.1016/j.amc.2008.10.060 | Zbl:1157.82015
  • Stan Alama; Lia Bronsard; Petru Mironescu On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, Journal of Functional Analysis, Volume 256 (2009) no. 4, pp. 1118-1136 | DOI:10.1016/j.jfa.2008.10.021 | Zbl:1159.35070
  • Zuhan Liu Spinor Ginzburg-Landau equation and mean curvature flow, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 5-6, pp. 2053-2086 | DOI:10.1016/j.na.2009.01.042 | Zbl:1178.35072
  • Stan Alama; Lia Bronsard Fractional degree vortices for a spinor Ginzburg-Landau model, Communications in Contemporary Mathematics, Volume 8 (2006) no. 3, pp. 355-380 | DOI:10.1142/s0219199706002143 | Zbl:1154.58308

Cité par 7 documents. Sources : zbMATH

Commentaires - Politique