Comptes Rendus
Partial Differential Equations
A uniqueness result for monotone elliptic problems
[Un résultat d'unicité pour des problèmes elliptiques monotones]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 313-316.

We give here a short proof of the uniqueness of entropy solutions for nonlinear monotone elliptic problems with L1-data.

Nous donnons une demonstration très simple de l'unicité des solutions entropiques de problèmes de Dirichlet dans L1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00347-9

Maria Michaela Porzio 1

1 Facoltá di Scienze, Università del Sannio, via Port'Arsa 11, 82100 Benevento, Italy
@article{CRMATH_2003__337_5_313_0,
     author = {Maria Michaela Porzio},
     title = {A uniqueness result for monotone elliptic problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {313--316},
     publisher = {Elsevier},
     volume = {337},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00347-9},
     language = {en},
}
TY  - JOUR
AU  - Maria Michaela Porzio
TI  - A uniqueness result for monotone elliptic problems
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 313
EP  - 316
VL  - 337
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00347-9
LA  - en
ID  - CRMATH_2003__337_5_313_0
ER  - 
%0 Journal Article
%A Maria Michaela Porzio
%T A uniqueness result for monotone elliptic problems
%J Comptes Rendus. Mathématique
%D 2003
%P 313-316
%V 337
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00347-9
%G en
%F CRMATH_2003__337_5_313_0
Maria Michaela Porzio. A uniqueness result for monotone elliptic problems. Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 313-316. doi : 10.1016/S1631-073X(03)00347-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00347-9/

[1] Ph. Bénilan; L. Boccardo; T. Gallouët; R. Gariepy; M. Pierre; J.L. Vázquez An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 22 (1995), pp. 241-273

[2] L. Boccardo Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994), Pitman Res. Notes Math. Ser., 350, Longman, Harlow, 1996, pp. 43-57

[3] H. Brezis; W.A. Strauss Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, Volume 25 (1973) no. 4, pp. 565-590

[4] A. Prignet Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat., Volume 15 (1995), pp. 321-337

[5] J. Serrin Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 18 (1964), pp. 385-387

[6] G. Stampacchia Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189-258

  • Maria Michaela Porzio On the influence of some absorption terms on the solutions of nonlinear parabolic equations, Annali di Matematica Pura ed Applicata (1923 -) (2025) | DOI:10.1007/s10231-025-01571-2
  • Maria Michaela Porzio; Flavia Smarrazzo Existence and uniqueness for a class of nonlinear elliptic equations with measure data, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 2, pp. 499-528 | DOI:10.1007/s10231-021-01126-1 | Zbl:1485.35369
  • Maria Michaela Porzio; Flavia Smarrazzo Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 194 (2015) no. 2, pp. 495-532 | DOI:10.1007/s10231-013-0386-y | Zbl:1315.35110
  • Lucio Boccardo; Lourdes Moreno-Mérida W1,1(ω) solutions of nonlinear problems with nonhomogeneous Neumann boundary conditions, Milan Journal of Mathematics, Volume 83 (2015) no. 2, pp. 279-293 | DOI:10.1007/s00032-015-0235-0 | Zbl:1336.35163
  • Lucio Boccardo; Alessio Porretta Uniqueness for elliptic problems with Hölder–type dependence on the solution, Communications on Pure and Applied Analysis, Volume 12 (2012) no. 4, p. 1569 | DOI:10.3934/cpaa.2013.12.1569
  • Lucio Boccardo; Thierry Gallouët W01,1 solutions in some borderline cases of Calderón-Zygmund theory, Journal of Differential Equations, Volume 253 (2012) no. 9, pp. 2698-2714 | DOI:10.1016/j.jde.2012.07.003 | Zbl:1266.35045

Cité par 6 documents. Sources : Crossref, zbMATH

Commentaires - Politique