[Random walks and potential theory in Lipschitz domains]
We give a technical estimate on the gradients of the Green's functions in Lipschitz domains. The main application is a sharp Central Limit Theorem for random walks in these domains.
On donne des estimations techniques sur les gradients de fonctions de Green dans des domaines lipschitziens. L'application principale de ces estimations est un théorème central limite optimal de marches aléatoires dans ces domaines.
Accepted:
Published online:
Nicholas Th. Varopoulos 1
@article{CRMATH_2003__337_9_615_0, author = {Nicholas Th. Varopoulos}, title = {Marches al\'eatoires et th\'eorie du potentiel dans les domaines lipschitziens}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--618}, publisher = {Elsevier}, volume = {337}, number = {9}, year = {2003}, doi = {10.1016/j.crma.2003.08.008}, language = {fr}, }
Nicholas Th. Varopoulos. Marches aléatoires et théorie du potentiel dans les domaines lipschitziens. Comptes Rendus. Mathématique, Volume 337 (2003) no. 9, pp. 615-618. doi : 10.1016/j.crma.2003.08.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.08.008/
[1] Asymptotic Analysis for Periodic Structures, North-Holland, 1978
[2] Partial Differential Equations, Wiley, 1964
[3] The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 3, pp. 109-135
[4] W. Feller, An Introduction to Probability Theory, Vol. 2, Wiley
[5] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to a convex domain, Czechoslovak Math. J., Volume 14 (1964), pp. 386-393
[6] Potential theory in Lipschitz domains, Canad. J. Math., Volume 53 (2001) no. 5, pp. 1057-1120
[7] A spectral approach to the asymptotic problem of diffusion, Differentsial'nye Uravneniya, Volume 25 (1985) no. 1, pp. 44-55
Cited by Sources:
Comments - Policy