[Non existence de minimiseurs pour une plaque membranaire non linéaire comprimée]
Les équations classiques de plaques membranaires non linéairement élastique, constituées d'un matériau de Saint Venant–Kirchhoff ont été justifiées par Fox et al. (Arch. Rational Mech. Anal. 124 (2) (1993) 157–199). On montre que le problème de minimisation associé à une telle plaque comprimée n'admet pas de solution. La preuve fait appel à un résultat de non existence de minimiseurs de fonctionnelles non convexes dû à Dacorogna et Marcellini (Arch. Rational Mech. Anal. 131 (4) (1995) 359–399). On généralise l'application de leur résultat de l'élasticité plane aux plaques membranaires.
The classical equations of a nonlinearly elastic membrane plate, made of Saint Venant–Kirchhoff material, have been justified by Fox et al. (Arch. Rational Mech. Anal. 124 (2) (1993) 157–199). We show that, under compression, the associated minimization problem admits no solution. The proof is based on a result of non-existence of minimizers of non-convex functionals due to Dacorogna and Marcellini (Arch. Rational Mech. Anal. 131 (4) (1995) 359–399). We generalize the application of their result from plane elasticity to membrane plates.
Accepté le :
Publié le :
Karim Trabelsi 1
@article{CRMATH_2003__337_8_553_0, author = {Karim Trabelsi}, title = {Non-existence of minimizers for a nonlinear membrane plate under compression}, journal = {Comptes Rendus. Math\'ematique}, pages = {553--558}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2003}, doi = {10.1016/j.crma.2003.09.008}, language = {en}, }
Karim Trabelsi. Non-existence of minimizers for a nonlinear membrane plate under compression. Comptes Rendus. Mathématique, Volume 337 (2003) no. 8, pp. 553-558. doi : 10.1016/j.crma.2003.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.008/
[1] Mathematical Elasticity, Vol. I, Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[2] Mathematical Elasticity, Vol. II, Theory of Plates, North-Holland, Amsterdam, 1997
[3] Justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg., Volume 17/18 (1979), pp. 227-258
[4] D. Coutand, Analyse mathématique de quelques problèmes d'élasticité non-linéaire et de calcul des variations, Doctoral Dissertation, Université Pierre et Marie Curie, Paris, 1999
[5] Existence of minimizers for non-quasiconvex integrals, Arch. Rational Mech. Anal., Volume 131 (1995) no. 4, pp. 359-399
[6] Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989
[7] A justification of nonlinear properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993) no. 2, pp. 157-199
[8] Theoretical Elasticity, Oxford University Press, 1968
[9] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578
[10] The quasiconvex envelope of the Saint Venant–Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A, Volume 125 (1995) no. 6, pp. 1179-1192
[11] K. Trabelsi, Non-existence of minimizers for the nonlinear plate membrane under compression, Preprint
- On nonlinearly elastic membranes under compression., Chinese Annals of Mathematics. Series B, Volume 27 (2006) no. 4, pp. 379-392 | DOI:10.1007/s11401-005-0182-0 | Zbl:1117.74033
- Nonlinearly elastic thin plate models for a class of Ogden materials. I: The membrane model, Analysis and Applications (Singapore), Volume 3 (2005) no. 2, pp. 195-221 | DOI:10.1142/s0219530505000534 | Zbl:1105.74017
- Incompressible nonlinearly elastic thin membranes, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 1, pp. 75-80 | DOI:10.1016/j.crma.2004.11.005 | Zbl:1094.74038
- Non-existence of minimizers for a nonlinear membrane plate under compression., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 8, pp. 553-558 | DOI:10.1016/j.crma.2003.09.008 | Zbl:1113.74375
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique