Comptes Rendus
Systèmes dynamiques/Informatique théorique
Complexity of gene circuits, Pfaffian functions and the morphogenesis problem
[Complexité de réseaux de gènes, fonctions de Pfaff et le problème de morphogenèse]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 11, pp. 721-724.

We consider a model of gene circuits. We show that these circuits are capable to generate any spatio–temporal patterns. We give lower bounds on the number of genes required to create a given pattern.

On considère un modèle de réseaux de gènes. Nous démontrons que ces réseaux peuvent engendrer toutes les structures spatio–temporelles et nous obtenons des bornes inférieures du nombre de gènes du réseau qui engendrent une structure prescrite.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.10.021

Sergey Vakulenko 1 ; Dmitry Grigoriev 2

1 Institute of Mechanical Engineering Problems, St Petersburg, Russia
2 IRMAR, Université de Rennes, Beaulieu, 35042 Rennes, France
@article{CRMATH_2003__337_11_721_0,
     author = {Sergey Vakulenko and Dmitry Grigoriev},
     title = {Complexity of gene circuits, {Pfaffian} functions and the morphogenesis problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {721--724},
     publisher = {Elsevier},
     volume = {337},
     number = {11},
     year = {2003},
     doi = {10.1016/j.crma.2003.10.021},
     language = {en},
}
TY  - JOUR
AU  - Sergey Vakulenko
AU  - Dmitry Grigoriev
TI  - Complexity of gene circuits, Pfaffian functions and the morphogenesis problem
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 721
EP  - 724
VL  - 337
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2003.10.021
LA  - en
ID  - CRMATH_2003__337_11_721_0
ER  - 
%0 Journal Article
%A Sergey Vakulenko
%A Dmitry Grigoriev
%T Complexity of gene circuits, Pfaffian functions and the morphogenesis problem
%J Comptes Rendus. Mathématique
%D 2003
%P 721-724
%V 337
%N 11
%I Elsevier
%R 10.1016/j.crma.2003.10.021
%G en
%F CRMATH_2003__337_11_721_0
Sergey Vakulenko; Dmitry Grigoriev. Complexity of gene circuits, Pfaffian functions and the morphogenesis problem. Comptes Rendus. Mathématique, Volume 337 (2003) no. 11, pp. 721-724. doi : 10.1016/j.crma.2003.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.021/

[1] A. Barron Universal approximation bounds for superpositions of a sigmoidal functions, IEEE Trans. Inform. Theory, Volume 39 (1993), pp. 930-945

[2] D. Grigoriev; N. Vorobjov Complexity lower bounds for computation trees with elementary transcendental functions gates, Theoret. Comput. Sci., Volume 157 (1996), pp. 185-214

[3] L.H. Hartwell; J.J. Hopfield; S. Leibler; A.W. Murray From molecular to modular cell biology, Nature, Volume 402 (1999), p. C47-C52

[4] J.J. Hopfield Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. USA, Volume 79 (1982), pp. 2554-2558

[5] A. Khovanskii Fewnomials, Transl. Math. Monographs, 88, American Mathematical Society, 1991

[6] H. Meinhardt Mathematical Models for Biological Pattern Formation (P.K. Maini; H.G. Othmer, eds.), IMA Vol. Math. Appl., 121, Springer, 2000

[7] E. Mjolness; D.H. Sharp; J. Reinitz A connectionist model of development, J. Theor. Biol., Volume 152 (1991), pp. 429-453

[8] J. Reinitz; D.H. Sharp Mechanism of formation of eve stripes, Mechanisms of Developments, Volume 49 (1995), pp. 133-158

[9] A.M. Turing The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, Volume 237 (1952), pp. 37-72

[10] L. Wolpert; R. Beddington; T. Jessell; P. Lawrence; E. Meyerowitz; J. Smith Principles of Development, Oxford University Press, 2002

[11] S. Vakulenko Dissipative systems generating any structurally stable chaos, Adv. Differential Equations, Volume 5 (2000), pp. 1139-1178

[12] S. Vakulenko, D. Grigoriev, Complexity of patterns generated by genetic circuits and Pfaffian functions, Preprint IHES, 2003

  • Sergey Vakulenko Transition to Multicellularity and Peto Paradox, Mathematics, Volume 11 (2023) no. 24, p. 5003 | DOI:10.3390/math11245003
  • Vincent Noel; Sergei Vakulenko; Ovidiu Radulescu Algorithm for Identification of Piecewise Smooth Hybrid Systems: Application to Eukaryotic Cell Cycle Regulation, Algorithms in Bioinformatics, Volume 6833 (2011), p. 225 | DOI:10.1007/978-3-642-23038-7_20
  • S. Vakulenko; D. Grigoriev Instability, complexity, and evolution, Journal of Mathematical Sciences (New York), Volume 158 (2009) no. 6, pp. 787-808 | DOI:10.1007/s10958-009-9412-4 | Zbl:1211.37121
  • D. Grigoriev; S. Vakulenko Algorithms and complexity in biological pattern formation problems, Annals of Pure and Applied Logic, Volume 141 (2006) no. 3, pp. 412-428 | DOI:10.1016/j.apal.2005.12.005 | Zbl:1094.92008
  • S. Vakulenko; D. Grigoriev Evolution in random environment and structural instability, Journal of Mathematical Sciences, Volume 138 (2006) no. 3, p. 5644 | DOI:10.1007/s10958-006-0333-1
  • S. Genieys; S. Vakulenko Patterning by genetic networks, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 2, pp. 173-190 | DOI:10.1002/mma.670 | Zbl:1079.35048
  • S.A. Vakulenko; A.A. Abramian, Proceedings of the International Conference Days on Diffraction-2005 (2005), p. 271 | DOI:10.1109/dd.2005.204902
  • Sergey Vakulenko; Dmitry Grigoriev Complexity of gene circuits, Pfaffian functions and the morphogenesis problem., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 11, pp. 721-724 | DOI:10.1016/j.crma.2003.10.021 | Zbl:1050.92003

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique