[Estimation du premier zero d'une fonction caractéristique]
Pour une fonction caractéristique (la transformation de Fourier d'une mesure de probabilité), le premier zéro contient des informations importantes. Nous allons présenter une formule générale pour l'estimée inférieure du premier zéro en terme de moments de tout ordre. Le résultat obtenu illustre l'aspect de complémentarité entre le premier zéro et les moments et sera utilisé pour étudier le principe d'incertitude en mécanique quantique.
For a characteristic function (Fourier transform of a probability distribution), the first zero encodes important information. We present a general lower bound estimation of the first zero in terms of a moment of any order. The result proves the complementary nature between the first zero and moments, and has interesting implications for quantum mechanical uncertainty relations.
Accepté le :
Publié le :
Shunlong Luo 1 ; Zhengmin Zhang 2
@article{CRMATH_2004__338_3_203_0, author = {Shunlong Luo and Zhengmin Zhang}, title = {Estimating the first zero of a characteristic function}, journal = {Comptes Rendus. Math\'ematique}, pages = {203--206}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2003.11.028}, language = {en}, }
Shunlong Luo; Zhengmin Zhang. Estimating the first zero of a characteristic function. Comptes Rendus. Mathématique, Volume 338 (2004) no. 3, pp. 203-206. doi : 10.1016/j.crma.2003.11.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.028/
[1] The principles of Quantum Mechanics, Clarendon Press, Oxford, 1958
[2] New form of the time-energy uncertainty relation, Phys. Rev. A, Volume 31 (1985), pp. 2078-2081
[3] The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., Volume 3 (1997), pp. 207-236
[4] An uncertainty inequality involving L1-norm, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 3565-3572
[5] Ultimate physical limits to computation, Nature, Volume 406 (2000), pp. 1047-1053
[6] An inequality for characteristic functions and its applications to uncertainty relations and quantum Zeno effect, J. Phys. A, Volume 35 (2002), pp. 5935-5941
[7] The maximum speed of dynamical evolution, Physica D, Volume 120 (1998), pp. 188-195
- Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations, Journal of Multivariate Analysis, Volume 173 (2019), p. 724 | DOI:10.1016/j.jmva.2019.06.003
- Quantum speed limit for qubit systems: Exact results, Physics Letters A, Volume 382 (2018) no. 37, p. 2599 | DOI:10.1016/j.physleta.2018.07.030
- Quantum speedup in a memory environment, Physical Review A, Volume 89 (2014) no. 1 | DOI:10.1103/physreva.89.012307
- Bounds for Characteristic Functions and Laplace Transforms of Probability Distributions, Theory of Probability Its Applications, Volume 56 (2012) no. 2, p. 350 | DOI:10.1137/s0040585x97985479
- Bounds for characteristic functions and Laplace transforms of probability distributions, Теория вероятностей и ее применения, Volume 56 (2011) no. 2, p. 407 | DOI:10.4213/tvp4385
- A Note on Fundamental Limit of Quantum Dynamics Rate, Communications in Theoretical Physics, Volume 54 (2010) no. 4, p. 661 | DOI:10.1088/0253-6102/54/4/15
- Fundamental limits on the speed of evolution of quantum states, Physica Scripta, Volume 82 (2010) no. 3, p. 035008 | DOI:10.1088/0031-8949/82/03/035008
- Inequalities for characteristic functions of multidimensional distributions, Journal of Mathematical Analysis and Applications, Volume 343 (2008) no. 1, p. 22 | DOI:10.1016/j.jmaa.2008.01.032
- An upper bound for characteristic functions of lattice distributions with applications to survival probabilities of quantum states, Journal of Physics A: Mathematical and Theoretical, Volume 40 (2007) no. 1, p. 131 | DOI:10.1088/1751-8113/40/1/007
- On Decaying Rate of Quantum States, Letters in Mathematical Physics, Volume 71 (2005) no. 1, p. 1 | DOI:10.1007/s11005-004-5095-4
Cité par 10 documents. Sources : Crossref
Commentaires - Politique