Comptes Rendus
Géométrie différentielle
Sur les tissus plans de rang maximal et le problème de Chern
[On maximal rank planar webs and Chern's problem]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 131-136.

We explain how it is possible to obtain the necessary conditions on functions defining a germ of planar web in order that it be of maximal rank. Then we apply this method to the study of maximal rank 5-webs. We show the existence of many exceptional 5-webs non-equivalent to Bol's web, thus giving an answer to Chern's problem.

On explique comment il est possible d'obtenir des conditions nécessaires sur des fonctions définissant un germe de tissu plan, pour que celui-ci soit de rang maximal. On applique ensuite cette méthode à l'étude des 5-tissus plans de rang maximal. On montre l'existence d'autres 5-tissus exceptionnels que le tissu de Bol, apportant ainsi une réponse au problème de Chern.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.04.022
Luc Pirio 1

1 Équipe d'analyse complexe, institut de mathématique de Jussieu, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2004__339_2_131_0,
     author = {Luc Pirio},
     title = {Sur les tissus plans de rang maximal et le probl\`eme de {Chern}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {131--136},
     publisher = {Elsevier},
     volume = {339},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2004.04.022},
     language = {fr},
}
TY  - JOUR
AU  - Luc Pirio
TI  - Sur les tissus plans de rang maximal et le problème de Chern
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 131
EP  - 136
VL  - 339
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2004.04.022
LA  - fr
ID  - CRMATH_2004__339_2_131_0
ER  - 
%0 Journal Article
%A Luc Pirio
%T Sur les tissus plans de rang maximal et le problème de Chern
%J Comptes Rendus. Mathématique
%D 2004
%P 131-136
%V 339
%N 2
%I Elsevier
%R 10.1016/j.crma.2004.04.022
%G fr
%F CRMATH_2004__339_2_131_0
Luc Pirio. Sur les tissus plans de rang maximal et le problème de Chern. Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 131-136. doi : 10.1016/j.crma.2004.04.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.022/

[1] N.H. Abel Méthode générale pour trouver des fonctions d'une seule quantité variable lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables, Œuvres complètes de N.H. Abel, t. 1, Grondhal Son, Christiania, 1881, pp. 1-10

[2] M. Akivis; V. Goldberg Differential geometry of webs, Handbook of Differential Geometry, vol. 1, North-Holland, Amsterdam, 2000

[3] W. Blaschke; G. Bol Geometrie der Gewebe, Grundlehren Math., vol. 49, Springer, Berlin, 1938

[4] G. Bol On n-webs of curves in a plane, Bull. Amer. Math. Soc., Volume 38 (1932), pp. 855-857

[5] G. Bol Über ein bemerkenswertes Fünfgewebe in der Ebene, Abh. Math. Semin. Hamb. Univ., Volume 11 (1936), pp. 387-393

[6] S.S. Chern Wilhelm Blaschke and Web Geometry, Wilhelm Blaschke Gesammelte Werke, vol. 5, Thales, Essen, 1985, pp. 21-23

[7] S.S. Chern Web geometry, Bull. Amer. Math. Soc., Volume 6 (1982), pp. 1-8

[8] S.S. Chern; P.A. Griffiths Abel's theorem and webs, Jahresber. Deutsch. Math.-Verein., Volume 80 (1978), pp. 13-110

[9] A. Hénaut Sur la courbure de Blaschke et le rang des tissus de 2 , Natural Sci. Rep. Ochanomizu Univ., Volume 51 (2000) no. 1, pp. 11-25

[10] S. Lie Bestimmung aller Fläschen, die in mehrfacher Weise durch Translationsbewegung einer Kurve erzeugt werden, Arch. für Math., Volume 7 (1882) no. 2, pp. 450-467

[11] G. Mignard Rang et courbure des 3-tissus de 2 , C. R. Acad. Sci. Paris, Sér. I, Volume 329 (1999), pp. 629-632

[12] L. Pirio Study of a functional equation associated to the Kummer's equation of the trilogarithm. Applications, 2002 (Preprint, arXiv) | arXiv

[13] L. Pirio, Abelian functional equations, planar web geometry and polylogarithms, Selecta Math. (NS), à paraı̂tre

[14] H. Poincaré Sur les surfaces de translation et les fonctions abéliennes, Bull. Soc. Math. France, Volume 29 (1901), pp. 61-86

[15] G. Robert, Relations fonctionnelles polylogarithmiques et tissus plans, Prépublication n 146 (2002), Université Bordeaux 1

[16] Web Theory and Related Topics (J. Grifone; J. Salem, eds.), World Scientific, 2001

Cited by Sources:

Comments - Policy


Articles of potential interest

Classification des tissus exceptionnels quasilinéaires complètement décomposables

Jorge Vitório Pereira; Luc Pirio

C. R. Math (2008)


Rang et courbure de Blaschke des tissus holomorphes réguliers de codimension un

Vincent Cavalier; Daniel Lehmann

C. R. Math (2008)


Détermination du rang des tissus du plan et autres invariants géométriques

Olivier Ripoll

C. R. Math (2005)