[Composition operators defined on the Wiener–Dirichlet algebra.]
In this Note, we study composition operators defined on the algebra whose elements are absolutely convergent Dirichlet series. We characterize bounded composition operators in , the composition automorphisms and the composition isometries. We also study their compacity.
Dans cette Note, nous étudions les opérateurs de composition sur l'algèbre des séries de Dirichlet absolument convergentes. Nous caractérisons les opérateurs de composition bornés dans , les opérateurs de composition automorphes et isométriques de . Nous étudions aussi leur compacité.
Accepted:
Published online:
Catherine Finet 1; Daniel Li 2; Hervé Queffélec 3
@article{CRMATH_2004__339_2_109_0, author = {Catherine Finet and Daniel Li and Herv\'e Queff\'elec}, title = {Op\'erateurs de composition sur l'alg\`ebre de {Wiener{\textendash}Dirichlet}}, journal = {Comptes Rendus. Math\'ematique}, pages = {109--114}, publisher = {Elsevier}, volume = {339}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2004.04.026}, language = {fr}, }
Catherine Finet; Daniel Li; Hervé Queffélec. Opérateurs de composition sur l'algèbre de Wiener–Dirichlet. Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 109-114. doi : 10.1016/j.crma.2004.04.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.026/
[1] Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie des Dirichletschen Reihen , Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1913), pp. 441-448
[2] Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3), Volume 53 (1986), pp. 112-142
[3] C. Finet, D. Li, H. Queffélec, Composition operators on the Wiener–Dirichlet algebra, Preprint
[4] The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Volume 46 (1999), pp. 313-329
[5] Schwarz's lemma in normed linear spaces, Proc. Math. Acad. Sci. USA, Volume 62 (1969), pp. 1014-1017
[6] An inequality for Hermite polynomials, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 981-983
[7] Séries de Fourier Absolument Convergentes, Springer-Verlag, New York, 1970
[8] Several Complex Variables, Chicago Lectures in Math., 1971
[9] Homomorphisms of , Amer. J. Math., Volume 91 (1969), pp. 37-46
[10] Fourier Analysis on Groups, Interscience, 1962
Cited by Sources:
Comments - Policy