Following the geometric approach for studying singular perturbation problems in the plane at turning points, and considering a very general setting where canard solutions are shown to exist, we study the transition time of orbits passing near the turning point, as well as the entry–exit relation at such turning points. The manifolds of canard solutions are in general only at the turning point, making the classical asymptotic approach impossible. The method involves a (family) blow up of the turning point and the use of -normal forms and center manifolds.
Suivant l'approche géométrique dans l'étude de problèmes de perturbations singulières dans le plan aux points tournants, et travaillant dans un cadre très général dans lequel apparaissent des solutions canards, nous étudions le temps de passage des orbites proche des points tournants, tout comme la relation entrée–sortie à tel point. Les variétés de solutions canards rencontrées ne sont en général que à un point tournant, ne permettant pas une approche asymptotique classique. L'approche est basée sur l'éclatement et l'utilisation de variétés centrales et de formes normales .
Accepted:
Published online:
Peter De Maesschalck 1; Freddy Dumortier 1
@article{CRMATH_2004__339_5_359_0, author = {Peter De Maesschalck and Freddy Dumortier}, title = {Time and entry{\textendash}exit relation near a planar turning point}, journal = {Comptes Rendus. Math\'ematique}, pages = {359--364}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.06.020}, language = {en}, }
Peter De Maesschalck; Freddy Dumortier. Time and entry–exit relation near a planar turning point. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 359-364. doi : 10.1016/j.crma.2004.06.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.020/
[1] Partially hyperbolic fixed points with constraints, Trans. Amer. Math. Soc., Volume 348 (1996) no. 3, pp. 997-1011
[2] Topics on singularities and bifurcations of vector fields, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Sci. Ser. II: Math. Phys. Chem., vol. 137, 2004
[3] F. Dumortier, P. De Maesschalck, Time analysis and entry–exit relation near planar turning points, 2004, preprint
[4] Canard cycles and center manifolds, Mem. Amer. Math. Soc., Volume 121 (1996), p. 577
[5] Multiple Canard cycles in generalized Liénard equations, J. Differential Equations, Volume 174 (2001) no. 1, pp. 1-29
Cited by Sources:
Comments - Policy