[L'existence des triangles errants.]
Les laminations fermées -invariantes (où ) ont été introduites par W. P. Thurston comme un outil pour l'étude des systèmes dynamiques dans le plan complexe. Il avait défini les triangles errants comme étant des triplets tels que est composé des trois points distincts pour tout , et les enveloppes convexes de tous les ensembles sont deux-à-deux disjointes dans le plan complexe. Il avait démontré que n'admet pas des triangles errants. Nous montrons que pour tout il existe une collection nondénombrable de laminations fermées -invariantes qui ont des triangles errants et des applications-facteurs de non-conjuguées, deux-à-deux distinctes, sur les espaces quotients associés.
W.P. Thurston introduced closed -invariant laminations (where , ) as a tool in complex dynamics. He defined wandering triangles as triples such that consists of three distinct points for all and the convex hulls of all the sets in the plane are pairwise disjoint, and proved that admits no wandering triangles. We show that for every there exist uncountably many -invariant closed laminations with wandering triangles and pairwise non-conjugate factor maps of on the corresponding quotient spaces.
Accepté le :
Publié le :
Alexander Blokh 1 ; Lex Oversteegen 1
@article{CRMATH_2004__339_5_365_0, author = {Alexander Blokh and Lex Oversteegen}, title = {Wandering triangles exist}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--370}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.06.024}, language = {en}, }
Alexander Blokh; Lex Oversteegen. Wandering triangles exist. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 365-370. doi : 10.1016/j.crma.2004.06.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.024/
[1] An inequality for laminations, Julia sets and “growing trees”, Ergodic Theory Dynamical Systems, Volume 22 (2002), pp. 63-97
[2] On dynamics of vertices of locally connected polynomial Julia sets, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 3219-3230
[3] The iteration of cubic polynomials. Part I: The global topology of parameter space, Acta Math., Volume 160 (1988), pp. 143-206
[4] Étude dynamique des polynômes complexes I, Publ. Math. Orsay, Volume 84-02 (1984)
[5] Étude dynamique des polynômes complexes II, Publ. Math. Orsay, Volume 85-04 (1985)
[6] Wandering orbit portraits, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 1473-1485
[7] J. Kiwi, eal laminations and the topological dynamics of complex polynomials, Adv. in Math., in press
[8] On backward stability of holomorphic dynamical systems, Fund. Math., Volume 158 (1998), pp. 97-107
[9] An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math, Volume 6 (1980), pp. 549-564
[10] W. Thurston, The combinatorics of iterated rational maps, Preprint, 1985
Cité par Sources :
Commentaires - Politique