Let A be a separable unital -algebra. It is shown that A is type I if and only if the CNT-entropy of every inner automorphism of A is zero.
Soit A une -algèbre avec unité, séparable, nous montrons que A est de type I si et seulement si la CNT-entropie de tout automorphisme intérieur de A est nulle.
Accepted:
Published online:
Nathanial P. Brown 1
@article{CRMATH_2004__339_12_827_0, author = {Nathanial P. Brown}, title = {Characterizing type {I} $ {C}^{*}$-algebras via entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {827--829}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.06.030}, language = {en}, }
Nathanial P. Brown. Characterizing type I $ {C}^{*}$-algebras via entropy. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 827-829. doi : 10.1016/j.crma.2004.06.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.030/
[1] N.P. Brown, K. Dykema, D. Shlyakhtenko, Topological entropy of free product automorphisms, Preprint
[2] Dynamical entropy of -algebras and von Neumann algebras, Commun. Math. Phys., Volume 112 (1987), pp. 691-719
[3] K. Dykema, Topological entropy for some automorphisms of reduced amalgamated free product -algebras, Preprint
[4] S. Neshveyev, E. Størmer, Entropy in type I algebras, Preprint
[5] Completely bounded maps and dilations, Pitman Res. Notes in Math., vol. 146, Longman, 1986
[6] -Algebras and Their Automorphism Groups, Academic Press, London, 1979
[7] E. Størmer, A survey of noncommutative dynamical entropy, Preprint
[8] Almost inductive limit automorphisms and embeddings into AF-algebras, Ergodic Theory Dynamical Systems, Volume 6 (1986), pp. 475-484
Cited by Sources:
Comments - Policy