This work establishes and exploits a connection between the invariant measure of stochastic partial differential equations (SPDEs) and the law of bridge processes. Namely, it is shown that the invariant measure of , where is a space–time white-noise, is identical to the law of the bridge process associated to , provided that a and f are related by , . Some consequences of this connection are investigated, including the existence and properties of the invariant measure for the SPDE on the line, .
On montre et exploite une connection entre la mesure invariante d'équations aux dérivées partielles stochastiques et les lois de processus ponts. En l'occurence, on montre que la mesure invariante de , où est un bruit blanc spatio-temporel, est la même que la loi du processus pont associé à , pourvu que a et f soient reliés comme , . Quelques conséquences de cette connection sont étudiées, comme l'existence et les propriétés d'une mesure invariante de l'équations aux dérivées partielle stochastique sur la ligne, .
Accepted:
Published online:
Maria G. Reznikoff 1; Eric Vanden-Eijnden 2
@article{CRMATH_2005__340_4_305_0, author = {Maria G. Reznikoff and Eric Vanden-Eijnden}, title = {Invariant measures of stochastic partial differential equations and conditioned diffusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--308}, publisher = {Elsevier}, volume = {340}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2004.12.025}, language = {en}, }
TY - JOUR AU - Maria G. Reznikoff AU - Eric Vanden-Eijnden TI - Invariant measures of stochastic partial differential equations and conditioned diffusions JO - Comptes Rendus. Mathématique PY - 2005 SP - 305 EP - 308 VL - 340 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2004.12.025 LA - en ID - CRMATH_2005__340_4_305_0 ER -
Maria G. Reznikoff; Eric Vanden-Eijnden. Invariant measures of stochastic partial differential equations and conditioned diffusions. Comptes Rendus. Mathématique, Volume 340 (2005) no. 4, pp. 305-308. doi : 10.1016/j.crma.2004.12.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.025/
[1] Large fluctuations for a nonlinear heat equation with noise, J. Phys. A, Volume 15 (1982), pp. 3025-3055
[2] Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1998
[3] Monotone parabolic Itô equations, J. Funct. Anal., Volume 29 (1978), pp. 275-286
[4] Stochastic partial differential equations, a review, Bull. Sci. Math., Volume 117 (1993), pp. 29-47
[5] Positive Harmonic Functions and Diffusion, Cambridge University Press, Cambridge, 1995
[6] Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1972
Cited by Sources:
Comments - Policy