Comptes Rendus
Numerical Analysis
On Zienkiewicz–Zhu error estimators for Maxwell's equations
Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 697-702.

We consider a posteriori Zienkiewicz–Zhu (ZZ) type error estimators for the Maxwell equations. The main tool is the use of appropriate recovered values of the electric field and its curl.

Nous considèrons des estimateurs d'erreur a posteriori du type Zienkiewicz–Zhu (ZZ) pour les équations de Maxwell. L'ingrédient principal est d'utiliser des valeurs nodales reconstituées du champ électrique et de son rotationnel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.03.016
Serge Nicaise 1

1 MACS, ISTV, université de Valenciennes, 59313 Valenciennes cedex 9, France
@article{CRMATH_2005__340_9_697_0,
     author = {Serge Nicaise},
     title = {On {Zienkiewicz{\textendash}Zhu} error estimators for {Maxwell's} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crma.2005.03.016},
     language = {en},
}
TY  - JOUR
AU  - Serge Nicaise
TI  - On Zienkiewicz–Zhu error estimators for Maxwell's equations
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 697
EP  - 702
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2005.03.016
LA  - en
ID  - CRMATH_2005__340_9_697_0
ER  - 
%0 Journal Article
%A Serge Nicaise
%T On Zienkiewicz–Zhu error estimators for Maxwell's equations
%J Comptes Rendus. Mathématique
%D 2005
%P 697-702
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crma.2005.03.016
%G en
%F CRMATH_2005__340_9_697_0
Serge Nicaise. On Zienkiewicz–Zhu error estimators for Maxwell's equations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 697-702. doi : 10.1016/j.crma.2005.03.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.016/

[1] R. Beck; R. Hiptmair; R. Hoppe; B. Wohlmuth Residual based a posteriori error estimators for eddy current computation, RAIRO Modél. Math. Anal. Numér., Volume 34 (2000), pp. 159-182

[2] A. Bossavit Computational Electromagnetism, Variational Formulation, Complementarity, Edge Elements, Academic Press, 1998

[3] P.G. Ciarlet The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[4] G. Kunert; S. Nicaise Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, ESAIM: Math. Model. Numer. Anal., Volume 37 (2003) no. 6, pp. 1013-1043

[5] P. Monk A posteriori error indicators for Maxwell's equations, J. Comp. Appl. Math., Volume 100 (1998), pp. 173-190

[6] J.-C. Nédélec Mixed finite elements in R3, Numer. Math., Volume 35 (1980), pp. 315-341

[7] S. Nicaise; E. Creusé A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes, Calcolo, Volume 40 (2003), pp. 249-271

[8] R. Rodriguez Some remarks on the Zienkiewicz–Zhu estimator, Numer. Methods Partial Differential Equations, Volume 10 (1994), pp. 625-635

[9] R. Verfürth A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley–Teubner, Chichester, Stuttgart, 1996

[10] O.C. Zienkiewicz; J.Z. Zhu A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., Volume 24 (1987), pp. 337-357

Cited by Sources:

Comments - Policy


Articles of potential interest

A posteriori error estimation for the dual mixed finite element method of the Stokes problem

Mohamed Farhloul; Serge Nicaise; Luc Paquet

C. R. Math (2004)


A posteriori error estimations of a SUPG method for anisotropic diffusion–convection–reaction problems

Thomas Apel; Serge Nicaise

C. R. Math (2007)


A posteriori residual error estimation of a cell-centered finite volume method

Serge Nicaise

C. R. Math (2004)