[Proprietés d'approximation des éléments finis de Raviart–Thomas hexaédriques d'ordre le plus bas]
Basic interpolation results are settled for lowest-order hexahedral Raviart–Thomas finite elements. Convergence in
Nous démontrons quelques résultats d'interpolation pour les éléments finis de Raviart–Thomas hexaédriques d'ordre le plus bas. Nous prouvons convergence dans l'espace
Accepté le :
Publié le :
Alfredo Bermúdez 1 ; Pablo Gamallo 2 ; María R. Nogueiras 1 ; Rodolfo Rodríguez 3
@article{CRMATH_2005__340_9_687_0, author = {Alfredo Berm\'udez and Pablo Gamallo and Mar{\'\i}a R. Nogueiras and Rodolfo Rodr{\'\i}guez}, title = {Approximation properties of lowest-order hexahedral {Raviart{\textendash}Thomas} finite elements}, journal = {Comptes Rendus. Math\'ematique}, pages = {687--692}, publisher = {Elsevier}, volume = {340}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.03.023}, language = {en}, }
TY - JOUR AU - Alfredo Bermúdez AU - Pablo Gamallo AU - María R. Nogueiras AU - Rodolfo Rodríguez TI - Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements JO - Comptes Rendus. Mathématique PY - 2005 SP - 687 EP - 692 VL - 340 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2005.03.023 LA - en ID - CRMATH_2005__340_9_687_0 ER -
%0 Journal Article %A Alfredo Bermúdez %A Pablo Gamallo %A María R. Nogueiras %A Rodolfo Rodríguez %T Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements %J Comptes Rendus. Mathématique %D 2005 %P 687-692 %V 340 %N 9 %I Elsevier %R 10.1016/j.crma.2005.03.023 %G en %F CRMATH_2005__340_9_687_0
Alfredo Bermúdez; Pablo Gamallo; María R. Nogueiras; Rodolfo Rodríguez. Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements. Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 687-692. doi : 10.1016/j.crma.2005.03.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.023/
[1] Approximation by quadrilateral finite elements, Math. Comp., Volume 71 (2002), pp. 909-922
[2] Quadrilateral
[3] Finite element approximation on quadrilateral meshes, Comm. Numer. Methods Engrg., Volume 17 (2001), pp. 805-812
[4] Eigenvalue problems (P.G. Ciarlet; P.L. Lions, eds.), Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 641-787
[5] Finite element vibration analysis of fluid–solid systems without spurious modes, SIAM J. Numer. Anal., Volume 32 (1995), pp. 1280-1295
[6] A. Bermúdez, P. Gamallo, M.R. Nogueiras, R. Rodríguez, Approximation of a structural acoustic vibration problem by hexahedral finite elements, submitted for publication
[7] A hexahedral face element for elastoacoustic vibration problems, J. Acoust. Soc. Amer., Volume 109 (2001), pp. 422-425
[8] An hexahedral face element method for the displacement formulation of structural acoustics problems, J. Comput. Acoust., Volume 9 (2001), pp. 911-918
[9] Finite element computation of three dimensional elastoacoustic vibrations, J. Sound Vib., Volume 219 (1999), pp. 277-304
[10] Finite element computation of the vibration modes of a fluid–solid system, Comput. Methods Appl. Mech. Engrg., Volume 119 (1994), pp. 355-370
[11] Mixed and Hybrid Finite Element Methods, Springer, New York, 1991
[12] Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986
[13] Mixed finite elements in
[14] A mixed finite element method for second order elliptic problems (I. Galligani; E. Magenes, eds.), Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315
[15] J.M. Thomas, Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1977
- A global
(div)-conforming finite element post-processing for stress recovery in nearly incompressible elasticity, Applied Mathematics and Computation, Volume 470 (2024), p. 21 (Id/No 128587) | DOI:10.1016/j.amc.2024.128587 | Zbl:1545.74007 - A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations, BIT, Volume 63 (2023) no. 4, p. 32 (Id/No 47) | DOI:10.1007/s10543-023-00988-6 | Zbl:1526.65054
- Poincaré type inequalities for vector functions with zero mean normal traces on the boundary and applications to interpolation methods, Contributions to partial differential equations and applications. Invited papers of the conferences `Contributions to partial differential equations', Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and `Applied and computational mathematics', University of Houston, Texas, USA, February 26–27, 2016, Cham: Springer, 2019, pp. 411-432 | DOI:10.1007/978-3-319-78325-3_22 | Zbl:1416.35016
- Domain decomposition methods for the diffusion equation with low-regularity solution, Computers Mathematics with Applications, Volume 74 (2017) no. 10, pp. 2369-2384 | DOI:10.1016/j.camwa.2017.07.017 | Zbl:1402.65155
- A Mixed Finite Element Method to Solve the EEG Forward Problem, IEEE Transactions on Medical Imaging, Volume 36 (2017) no. 4, p. 930 | DOI:10.1109/tmi.2016.2624634
- Minimal degree
and conforming finite elements on polytopal meshes, Mathematics of Computation, Volume 86 (2017) no. 307, pp. 2053-2087 | DOI:10.1090/mcom/3152 | Zbl:1364.65244 - Mixed Finite Elements for Electromagnetic Problems, Mixed Finite Element Methods and Applications, Volume 44 (2013), p. 625 | DOI:10.1007/978-3-642-36519-5_11
- Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence, Computer Methods in Applied Mechanics and Engineering, Volume 209-212 (2012), pp. 101-114 | DOI:10.1016/j.cma.2011.08.018 | Zbl:1243.74187
- HexahedralH(div) andH(curl) finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 1, p. 115 | DOI:10.1051/m2an/2010034
- On reproducing uniform flow exactly on general hexahedral cells using one degree of freedom per surface, Advances in Water Resources, Volume 32 (2009) no. 2, p. 264 | DOI:10.1016/j.advwatres.2008.11.005
- A finite volume method for approximating 3D diffusion operators on general meshes, Journal of Computational Physics, Volume 228 (2009) no. 16, pp. 5763-5786 | DOI:10.1016/j.jcp.2009.05.002 | Zbl:1168.76340
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique