Comptes Rendus
Numerical Analysis
Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements
[Proprietés d'approximation des éléments finis de Raviart–Thomas hexaédriques d'ordre le plus bas]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 687-692.

Basic interpolation results are settled for lowest-order hexahedral Raviart–Thomas finite elements. Convergence in H(div) is proved for regular families of asymptotically parallelepiped meshes. The need of the asymptotically parallelepiped assumption is demonstrated with a numerical example.

Nous démontrons quelques résultats d'interpolation pour les éléments finis de Raviart–Thomas hexaédriques d'ordre le plus bas. Nous prouvons convergence dans l'espace H(div) pour des familles régulières de maillages dont les éléments sont, asymptotiquement, des parallélépipèdes. La nécessité de cette hypothèse est montrée numériquement avec un exemple.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.03.023

Alfredo Bermúdez 1 ; Pablo Gamallo 2 ; María R. Nogueiras 1 ; Rodolfo Rodríguez 3

1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
2 Institute of Sound and Vibration Research, University of Southampton, Highfield Road, Southampton SO17 1BJ, UK
3 GI
@article{CRMATH_2005__340_9_687_0,
     author = {Alfredo Berm\'udez and Pablo Gamallo and Mar{\'\i}a R. Nogueiras and Rodolfo Rodr{\'\i}guez},
     title = {Approximation properties of lowest-order hexahedral {Raviart{\textendash}Thomas} finite elements},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {687--692},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crma.2005.03.023},
     language = {en},
}
TY  - JOUR
AU  - Alfredo Bermúdez
AU  - Pablo Gamallo
AU  - María R. Nogueiras
AU  - Rodolfo Rodríguez
TI  - Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 687
EP  - 692
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2005.03.023
LA  - en
ID  - CRMATH_2005__340_9_687_0
ER  - 
%0 Journal Article
%A Alfredo Bermúdez
%A Pablo Gamallo
%A María R. Nogueiras
%A Rodolfo Rodríguez
%T Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements
%J Comptes Rendus. Mathématique
%D 2005
%P 687-692
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crma.2005.03.023
%G en
%F CRMATH_2005__340_9_687_0
Alfredo Bermúdez; Pablo Gamallo; María R. Nogueiras; Rodolfo Rodríguez. Approximation properties of lowest-order hexahedral Raviart–Thomas finite elements. Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 687-692. doi : 10.1016/j.crma.2005.03.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.023/

[1] D.N. Arnold; D. Boffi; R.S. Falk Approximation by quadrilateral finite elements, Math. Comp., Volume 71 (2002), pp. 909-922

[2] D.N. Arnold; D. Boffi; R.S. Falk Quadrilateral H(div) finite elements, SIAM J. Numer. Anal., Volume 42 (2005), pp. 2429-2451

[3] D.N. Arnold; D. Boffi; R.S. Falk; L. Gastaldi Finite element approximation on quadrilateral meshes, Comm. Numer. Methods Engrg., Volume 17 (2001), pp. 805-812

[4] I. Babuška; J. Osborn Eigenvalue problems (P.G. Ciarlet; P.L. Lions, eds.), Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 641-787

[5] A. Bermúdez; R. Durán; M.A. Muschietti; R. Rodríguez; J. Solomin Finite element vibration analysis of fluid–solid systems without spurious modes, SIAM J. Numer. Anal., Volume 32 (1995), pp. 1280-1295

[6] A. Bermúdez, P. Gamallo, M.R. Nogueiras, R. Rodríguez, Approximation of a structural acoustic vibration problem by hexahedral finite elements, submitted for publication

[7] A. Bermúdez; P. Gamallo; R. Rodríguez A hexahedral face element for elastoacoustic vibration problems, J. Acoust. Soc. Amer., Volume 109 (2001), pp. 422-425

[8] A. Bermúdez; P. Gamallo; R. Rodríguez An hexahedral face element method for the displacement formulation of structural acoustics problems, J. Comput. Acoust., Volume 9 (2001), pp. 911-918

[9] A. Bermúdez; L. Hervella-Nieto; R. Rodríguez Finite element computation of three dimensional elastoacoustic vibrations, J. Sound Vib., Volume 219 (1999), pp. 277-304

[10] A. Bermúdez; R. Rodríguez Finite element computation of the vibration modes of a fluid–solid system, Comput. Methods Appl. Mech. Engrg., Volume 119 (1994), pp. 355-370

[11] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer, New York, 1991

[12] V. Girault; P.A. Raviart Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986

[13] J.C. Nédélec Mixed finite elements in R3, Numer. Math., Volume 35 (1980), pp. 315-341

[14] P.A. Raviart; J.M. Thomas A mixed finite element method for second order elliptic problems (I. Galligani; E. Magenes, eds.), Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315

[15] J.M. Thomas, Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1977

  • G. Taraschi; M. R. Correa; A. S. Pinto; C. O. Faria A global H(div)-conforming finite element post-processing for stress recovery in nearly incompressible elasticity, Applied Mathematics and Computation, Volume 470 (2024), p. 21 (Id/No 128587) | DOI:10.1016/j.amc.2024.128587 | Zbl:1545.74007
  • Zhijie Du; Huoyuan Duan A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations, BIT, Volume 63 (2023) no. 4, p. 32 (Id/No 47) | DOI:10.1007/s10543-023-00988-6 | Zbl:1526.65054
  • Sergey Repin Poincaré type inequalities for vector functions with zero mean normal traces on the boundary and applications to interpolation methods, Contributions to partial differential equations and applications. Invited papers of the conferences `Contributions to partial differential equations', Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and `Applied and computational mathematics', University of Houston, Texas, USA, February 26–27, 2016, Cham: Springer, 2019, pp. 411-432 | DOI:10.1007/978-3-319-78325-3_22 | Zbl:1416.35016
  • Patrick jun. Ciarlet; E. Jamelot; F. D. Kpadonou Domain decomposition methods for the diffusion equation with low-regularity solution, Computers Mathematics with Applications, Volume 74 (2017) no. 10, pp. 2369-2384 | DOI:10.1016/j.camwa.2017.07.017 | Zbl:1402.65155
  • J. Vorwerk; C. Engwer; S. Pursiainen; C. H. Wolters A Mixed Finite Element Method to Solve the EEG Forward Problem, IEEE Transactions on Medical Imaging, Volume 36 (2017) no. 4, p. 930 | DOI:10.1109/tmi.2016.2624634
  • Wenbin Chen; Yanqiu Wang Minimal degree {H}({{\mathrm}} {curl}) and {H}({{\mathrm}} {div}) conforming finite elements on polytopal meshes, Mathematics of Computation, Volume 86 (2017) no. 307, pp. 2053-2087 | DOI:10.1090/mcom/3152 | Zbl:1364.65244
  • Daniele Boffi; Franco Brezzi; Michel Fortin Mixed Finite Elements for Electromagnetic Problems, Mixed Finite Element Methods and Applications, Volume 44 (2013), p. 625 | DOI:10.1007/978-3-642-36519-5_11
  • H. A. F. A. Santos; John A. Evans; Thomas J. R. Hughes Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence, Computer Methods in Applied Mechanics and Engineering, Volume 209-212 (2012), pp. 101-114 | DOI:10.1016/j.cma.2011.08.018 | Zbl:1243.74187
  • Richard S. Falk; Paolo Gatto; Peter Monk HexahedralH(div) andH(curl) finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 1, p. 115 | DOI:10.1051/m2an/2010034
  • J.M. Nordbotten; H. Hægland On reproducing uniform flow exactly on general hexahedral cells using one degree of freedom per surface, Advances in Water Resources, Volume 32 (2009) no. 2, p. 264 | DOI:10.1016/j.advwatres.2008.11.005
  • F. Hermeline A finite volume method for approximating 3D diffusion operators on general meshes, Journal of Computational Physics, Volume 228 (2009) no. 16, pp. 5763-5786 | DOI:10.1016/j.jcp.2009.05.002 | Zbl:1168.76340

Cité par 11 documents. Sources : Crossref, zbMATH

Commentaires - Politique