Comptes Rendus
Dynamical Systems
An invertible contraction that is not C1-linearizable
[Une contraction inversible qui n'est pas C1-linéarisable]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 847-850.

Nous présentons un exemple de contraction inversible et régulière dans un espace de Hilbert de dimension infinie qui n'est pas localement C1-linéarisable autour de son point fixe.

We present an example of a smooth invertible contraction in an infinite-dimensional Hilbert space that is not locally C1-linearizable near its fixed point.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.028

Hildebrando M. Rodrigues 1 ; J. Solà-Morales 2

1 Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos, SP, Brazil
2 Departament de Matemàtica Aplicada 1, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
@article{CRMATH_2005__340_11_847_0,
     author = {Hildebrando M. Rodrigues and J. Sol\`a-Morales},
     title = {An invertible contraction that is not $ {C}^{1}$-linearizable},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {847--850},
     publisher = {Elsevier},
     volume = {340},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.028},
     language = {en},
}
TY  - JOUR
AU  - Hildebrando M. Rodrigues
AU  - J. Solà-Morales
TI  - An invertible contraction that is not $ {C}^{1}$-linearizable
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 847
EP  - 850
VL  - 340
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.028
LA  - en
ID  - CRMATH_2005__340_11_847_0
ER  - 
%0 Journal Article
%A Hildebrando M. Rodrigues
%A J. Solà-Morales
%T An invertible contraction that is not $ {C}^{1}$-linearizable
%J Comptes Rendus. Mathématique
%D 2005
%P 847-850
%V 340
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.04.028
%G en
%F CRMATH_2005__340_11_847_0
Hildebrando M. Rodrigues; J. Solà-Morales. An invertible contraction that is not $ {C}^{1}$-linearizable. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 847-850. doi : 10.1016/j.crma.2005.04.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.028/

[1] B. Abbaci, Varietés invariantes et applications, Thèse, Université Paris 7, 2001

[2] B. Abbaci On a theorem of Philip Hartman, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 781-786

[3] M.S. ElBialy Local contractions of Banach spaces and spectral gap conditions, J. Funct. Anal., Volume 182 (2001), pp. 108-150

[4] C. Chicone; R. Swanson Linearization via the Lie derivative, Electron. J. Differential Equations Monograph, Volume 02 (2000)

[5] P. Hartman On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana, Volume 5 (1960) no. 2, pp. 220-241

[6] X. Mora; J. Solà-Morales Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 187-210

[7] C.C. Pugh On a theorem of P. Hartman, Amer. J. Math., Volume 91 (1969), pp. 363-367

[8] H.M. Rodrigues; J.G. Ruas Filho The Hartman–Grobman theorem for reversible systems on Banach spaces, J. Nonlinear Sci., Volume 7 (1997), pp. 271-280

[9] H.M. Rodrigues; J. Solà-Morales Linearization of class C1 for contractions on Banach spaces, J. Differential Equations, Volume 201 (2004), pp. 351-382

[10] H.M. Rodrigues; J. Solà-Morales Smooth linearization for a saddle on Banach spaces, J. Dynamics Differential Equations, Volume 16 (2004) no. 3, pp. 767-793

[11] B. Tan, Invariant manifolds, invariant foliations and linearization theorems in Banach space, PhD. Thesis, Georgia Institute of Technology, 1998

Cité par Sources :

Commentaires - Politique