[Une contraction inversible qui n'est pas -linéarisable]
Nous présentons un exemple de contraction inversible et régulière dans un espace de Hilbert de dimension infinie qui n'est pas localement -linéarisable autour de son point fixe.
We present an example of a smooth invertible contraction in an infinite-dimensional Hilbert space that is not locally -linearizable near its fixed point.
Accepté le :
Publié le :
Hildebrando M. Rodrigues 1 ; J. Solà-Morales 2
@article{CRMATH_2005__340_11_847_0, author = {Hildebrando M. Rodrigues and J. Sol\`a-Morales}, title = {An invertible contraction that is not $ {C}^{1}$-linearizable}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--850}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.028}, language = {en}, }
Hildebrando M. Rodrigues; J. Solà-Morales. An invertible contraction that is not $ {C}^{1}$-linearizable. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 847-850. doi : 10.1016/j.crma.2005.04.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.028/
[1] B. Abbaci, Varietés invariantes et applications, Thèse, Université Paris 7, 2001
[2] On a theorem of Philip Hartman, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 781-786
[3] Local contractions of Banach spaces and spectral gap conditions, J. Funct. Anal., Volume 182 (2001), pp. 108-150
[4] Linearization via the Lie derivative, Electron. J. Differential Equations Monograph, Volume 02 (2000)
[5] On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana, Volume 5 (1960) no. 2, pp. 220-241
[6] Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 187-210
[7] On a theorem of P. Hartman, Amer. J. Math., Volume 91 (1969), pp. 363-367
[8] The Hartman–Grobman theorem for reversible systems on Banach spaces, J. Nonlinear Sci., Volume 7 (1997), pp. 271-280
[9] Linearization of class for contractions on Banach spaces, J. Differential Equations, Volume 201 (2004), pp. 351-382
[10] Smooth linearization for a saddle on Banach spaces, J. Dynamics Differential Equations, Volume 16 (2004) no. 3, pp. 767-793
[11] B. Tan, Invariant manifolds, invariant foliations and linearization theorems in Banach space, PhD. Thesis, Georgia Institute of Technology, 1998
Cité par Sources :
Commentaires - Politique