Comptes Rendus
Probability Theory/Differential Geometry
Stochastic covariant calculus of order two
[Calcul stochastique covariant d'ordre deux]
Comptes Rendus. Mathématique, Volume 341 (2005) no. 3, pp. 185-188.

Nous étudions des semimartingales continues à valeurs dans un fibré vectoriel E au dessus d'une variété différentielle M. Dans la continuité des travaux de Meyer et Schwartz, nous montrons que l'intégration stochastique sur une variété concerne en réalité des opérateurs différentiels d'ordre 2, en accord avec la formule d'Itô qui fait intervenir le 2-jet d'une fonction et non sa différentielle, et à l'aide de la notion de connexion d'ordre 2. Un exemple fondamental de connexion d'ordre 2 est donné par le 2-jet du transport parallèle le long des géodésiques sur M.

We study continuous semimartingales in a vector fibre bundle E over a differentiable manifold M. Following Meyer and Schwartz's principle, we show that stochastic covariant integration on a manifold involves second order differential operators, according to the Itô formula integrating not only the differential but the 2-jet of a function, and using a notion of connection of order 2. A fundamental example of such a connection is given by the 2-jet of the parallel transport along geodesics on M.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.06.023

Laurence Maillard-Teyssier 1

1 Laboratoire LAMA, université de Versailles Saint Quentin-en-Yvelines, bâtiment Fermat, 45, avenue des États-Unis, 78035 Versailles, France
@article{CRMATH_2005__341_3_185_0,
     author = {Laurence Maillard-Teyssier},
     title = {Stochastic covariant calculus of order two},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {185--188},
     publisher = {Elsevier},
     volume = {341},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crma.2005.06.023},
     language = {en},
}
TY  - JOUR
AU  - Laurence Maillard-Teyssier
TI  - Stochastic covariant calculus of order two
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 185
EP  - 188
VL  - 341
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2005.06.023
LA  - en
ID  - CRMATH_2005__341_3_185_0
ER  - 
%0 Journal Article
%A Laurence Maillard-Teyssier
%T Stochastic covariant calculus of order two
%J Comptes Rendus. Mathématique
%D 2005
%P 185-188
%V 341
%N 3
%I Elsevier
%R 10.1016/j.crma.2005.06.023
%G en
%F CRMATH_2005__341_3_185_0
Laurence Maillard-Teyssier. Stochastic covariant calculus of order two. Comptes Rendus. Mathématique, Volume 341 (2005) no. 3, pp. 185-188. doi : 10.1016/j.crma.2005.06.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.023/

[1] S. Cohen Géométrie différentielle stochastique avec sauts I, Stochastics Stochastics Rep., Volume 56 (1996) no. 3–4, pp. 179-203

[2] K.D. Elworthy Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Note Ser., vol. 70, Cambridge University Press, Cambridge, 1982

[3] M. Emery Stochastic Calculus in Manifolds, Universitext, Springer-Verlag, Berlin, 1989

[4] S. Kobayashi; K. Nomizu Foundations of Differential Geometry, vol. I, Interscience, Wiley, New York–London, 1963

[5] L. Maillard-Teyssier Calcul stochastique covariant à sauts et calcul stochastique à sauts covariants, Thèse de doctorat (2003) – UVSQ – « thèses-EN-ligne » http://tel.ccsd.cnrs.fr/documents/archives0/00/00/42/26/

[6] P.-A. Meyer Géométrie stochastique sans larme, Séminaire de Probabilités XV, Univ. Strasbourg, Strasbourg, 1979–1980, Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 44-102

[7] P.-A. Meyer Géometrie différentielle stochastique II, Séminaire de Probabilités, XVI, Supplement, Lecture Notes in Math., vol. 921, Springer, Berlin, 1982, pp. 165-207

[8] P.-A. Meyer A differential geometric formalism for the Itô calculus, Stochastic Integrals, Proc. Sympos., Univ. Durham, Durham, 1980, Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 256-270

[9] J.R. Norris A complete differential formalism for stochastic calculus in manifolds, Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, Berlin, 1992, pp. 189-209

[10] J. Picard Calcul stochastique avec sauts sur une variété, Séminaire de Probabilités, XXV, Lecture Notes in Math., vol. 1485, Springer, Berlin, 1991, pp. 196-219

[11] L. Schwartz Géométrie différentielle du 2me ordre, semi-martingales et équations différentielles stochastiques sur une variété différentielle, Séminaire de Probabilités, XVI, Supplément, Lecture Notes in Math., vol. 921, Springer, Berlin, 1982, pp. 1-148

[12] M. Spivak A Comprehensive Introduction to Differential Geometry, vol. II, Publish or Perish, Wilmington, 1979

[13] K. Yano; S. Ishihara Tangent and Cotangent Bundles: Differential Geometry, Pure Appl. Math., vol. 16, Marcel Dekker, New York, 1973

Cité par Sources :

Commentaires - Politique